[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 2322
1. Vasaturo M, Fiengo L, De Tommasi N, Sabatino L, Ziccardi P, Colantuoni V, Bruno M, Cerchia C, Novellino E, Lupo A, Lavecchia A, Piaz FD: A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability. Sci Rep; 2017 Jan 24;7:41273

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1).
  • We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments.
  • 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28117438.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


2. Pille J, van Lith SA, van Hest JC, Leenders WP: Self-Assembling VHH-Elastin-Like Peptides for Photodynamic Nanomedicine. Biomacromolecules; 2017 Apr 10;18(4):1302-1310
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • 7D12, a VHH against the epidermal growth factor receptor (EGFR) that is overexpressed in various cancers, has been evaluated as an effective cancer-targeting VHH in multiple studies.
  • We present proof of concept of the usability of such particles by controlled incorporation of a photosensitizer and show that the resulting nanoparticles induce EGFR-specific light-induced cell killing.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Annu Rev Biochem. 2013;82:775-97 [23495938.001]
  • [Cites] Int J Cancer. 2011 Oct 15;129(8):2013-24 [21520037.001]
  • [Cites] J Neurochem. 2005 Nov;95(4):1201-14 [16271053.001]
  • [Cites] Structure. 2013 Jul 2;21(7):1214-24 [23791944.001]
  • [Cites] J Biomed Biotechnol. 2010;2010:274346 [20414351.001]
  • [Cites] Nanoscale Res Lett. 2014 Sep 26;9(1):528 [25328501.001]
  • [Cites] Cancer Immunol Immunother. 2007 Mar;56(3):303-317 [16738850.001]
  • [Cites] Z Naturforsch C. 2003 Nov-Dec;58(11-12):873-8 [14713168.001]
  • [Cites] Adv Healthc Mater. 2013 Jul;2(7):1045-55 [23441099.001]
  • [Cites] Biomacromolecules. 2014 Oct 13;15(10):3522-30 [25142785.001]
  • [Cites] Biopolymers. 1992 Sep;32(9):1243-50 [1420991.001]
  • [Cites] Vet Immunol Immunopathol. 2009 Mar 15;128(1-3):178-83 [19026455.001]
  • [Cites] Med Microbiol Immunol. 2009 Aug;198(3):157-74 [19529959.001]
  • [Cites] ACS Nano. 2011 Jun 28;5(6):4319-28 [21609027.001]
  • [Cites] Biophys J. 2011 May 4;100(9):2309-17 [21539801.001]
  • [Cites] Biomacromolecules. 2013 Aug 12;14(8):2866-72 [23808597.001]
  • [Cites] J Control Release. 2016 May 10;229:93-105 [26988602.001]
  • [Cites] Langmuir. 2014 Apr 1;30(12):3432-40 [24611880.001]
  • [Cites] Int J Mol Sci. 2011;12(5):2808-21 [21686152.001]
  • [Cites] Biomacromolecules. 2010 Apr 12;11(4):944-52 [20184309.001]
  • [Cites] Biomacromolecules. 2014 Jul 14;15(7):2751-9 [24945908.001]
  • [Cites] Analyst. 2011 Feb 7;136(3):515-9 [21109889.001]
  • [Cites] Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247-51 [2682640.001]
  • [Cites] J Control Release. 2015 Jan 10;197:190-8 [25445702.001]
  • [Cites] Phys Chem Chem Phys. 2015 Oct 14;17(38):25250-9 [26353083.001]
  • [Cites] Lasers Surg Med. 2002;31(4):289-93 [12355576.001]
  • [Cites] J Control Release. 2012 Apr 30;159(2):281-9 [22227023.001]
  • [Cites] J Biol Chem. 2011 Apr 1;286(13):11211-7 [21282104.001]
  • (PMID = 28269985.001).
  • [ISSN] 1526-4602
  • [Journal-full-title] Biomacromolecules
  • [ISO-abbreviation] Biomacromolecules
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


3. Stevens MY, Chow SY, Estrada S, Eriksson J, Asplund V, Orlova A, Mitran B, Antoni G, Larhed M, Åberg O, Odell LR: Synthesis of <sup>11</sup>C-labeled Sulfonyl Carbamates through a Multicomponent Reaction Employing Sulfonyl Azides, Alcohols, and [<sup>11</sup>C]CO. ChemistryOpen; 2016 Dec;5(6):566-573

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The target compound was obtained in 24±10 % isolated radiochemical yield and was evaluated for binding properties in a tumor cell assay; in vivo biodistribution and imaging studies were also performed.
  • This represents the first successful radiolabeling of a non-peptide angiotensin II receptor subtype 2 agonist, C21, currently in clinical trials for the treatment of idiopathic pulmonary fibrosis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28032026.001).
  • [Journal-full-title] ChemistryOpen
  • [ISO-abbreviation] ChemistryOpen
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; AT2R agonists / multicomponent reactions / radiochemistry / sulfonyl azides / sulfonyl carbamates
  •  go-up   go-down


Advertisement
4. Keller AN, Eckle SB, Xu W, Liu L, Hughes VA, Mak JY, Meehan BS, Pediongco T, Birkinshaw RW, Chen Z, Wang H, D'Souza C, Kjer-Nielsen L, Gherardin NA, Godfrey DI, Kostenko L, Corbett AJ, Purcell AW, Fairlie DP, McCluskey J, Rossjohn J: Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol; 2017 Apr;18(4):402-411
Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands.
  • Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket.
  • This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Exp Med. 2013 Oct 21;210(11):2305-20 [24101382.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [20383002.001]
  • [Cites] J Exp Med. 2014 Jul 28;211(8):1585-600 [25049336.001]
  • [Cites] Nat Commun. 2014 May 15;5:3866 [24832684.001]
  • [Cites] J Pharm Sci. 1978 Apr;67(4):526-31 [641762.001]
  • [Cites] J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [19461840.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [20057044.001]
  • [Cites] Nat Rev Immunol. 2015 Oct;15(10 ):643-54 [26388332.001]
  • [Cites] J Exp Med. 2010 Jul 5;207(7):1555-67 [20566715.001]
  • [Cites] Nature. 2012 Nov 29;491(7426):717-23 [23051753.001]
  • [Cites] Arh Hig Rada Toksikol. 2016 Mar;67(1):1-8 [27092633.001]
  • [Cites] Clin Pharmacokinet. 1997 Sep;33(3):184-213 [9314611.001]
  • [Cites] Immunity. 2016 Jan 19;44(1):32-45 [26795251.001]
  • [Cites] Immunity. 2009 Feb 20;30(2):193-203 [19167249.001]
  • [Cites] Nat Biotechnol. 2004 May;22(5):589-94 [15064769.001]
  • [Cites] J Med Chem. 2007 Jan 11;50(1):74-82 [17201411.001]
  • [Cites] J Pediatr. 2014 Feb;164(2):231-6 [24286573.001]
  • [Cites] Immunol Res. 2014 Dec;60(2-3):289-310 [25391609.001]
  • [Cites] Mucosal Immunol. 2015 Mar;8(2):429-40 [25269706.001]
  • [Cites] J Biol Chem. 2015 Dec 18;290(51):30204-11 [26468291.001]
  • [Cites] Nature. 2012 Jun 28;486(7404):554-8 [22722860.001]
  • [Cites] PLoS Biol. 2010 Jun 29;8(6):e1000407 [20613858.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [21460441.001]
  • [Cites] J Immunol Methods. 1987 Jul 16;101(1):141-5 [3611791.001]
  • [Cites] Nat Immunol. 2016 May;17 (5):531-7 [27043408.001]
  • [Cites] Clin Transl Allergy. 2015 Oct 13;5:34 [26468368.001]
  • [Cites] Blood. 2003 Nov 15;102(10):3530-40 [12869497.001]
  • [Cites] Annu Rev Immunol. 2014;32:323-66 [24499274.001]
  • [Cites] Nature. 2014 May 15;509(7500):361-5 [24695216.001]
  • [Cites] Front Immunol. 2014 Oct 08;5:450 [25339949.001]
  • [Cites] J Biol Chem. 2005 Jun 3;280(22):21183-93 [15802267.001]
  • [Cites] Nat Rev Immunol. 2006 Apr;6(4):271-82 [16557259.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [20124702.001]
  • [Cites] Nat Immunol. 2010 Aug;11(8):701-8 [20581831.001]
  • [Cites] Nature. 1981 May 21;291(5812):238-9 [7015147.001]
  • [Cites] Immunol Cell Biol. 2014 Apr;92(4):377-83 [24394993.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2012;52:401-31 [22017685.001]
  • [Cites] Blood. 2011 Jan 27;117(4):1250-9 [21084709.001]
  • [Cites] Mucosal Immunol. 2017 Jan;10 (1):58-68 [27143301.001]
  • [Cites] Nat Commun. 2013;4:2142 [23846752.001]
  • [Cites] J Immunol. 2006 Feb 1;176(3):1618-27 [16424191.001]
  • [Cites] Nat Immunol. 2015 Nov;16(11):1114-23 [26482978.001]
  • [Cites] J Exp Med. 2012 Apr 9;209(4):761-74 [22412157.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [20124692.001]
  • [Cites] Pediatr Blood Cancer. 2005 Jun 15;44(7):638-42 [15704189.001]
  • [Cites] Nat Rev Rheumatol. 2015 Aug;11(8):450-61 [25986717.001]
  • [Cites] J Exp Med. 1999 Jun 21;189(12):1907-21 [10377186.001]
  • [Cites] Nature. 2003 Mar 13;422(6928):164-9 [12634786.001]
  • (PMID = 28166217.001).
  • [ISSN] 1529-2916
  • [Journal-full-title] Nature immunology
  • [ISO-abbreviation] Nat. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


5. Gilligan LC, Gondal A, Tang V, Hussain MT, Arvaniti A, Hewitt AM, Foster PA: Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Front Pharmacol; 2017;8:103

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E<sub>1</sub>S.
  • STS activity is significantly higher in CRC cell lysate, suggesting the importance of E<sub>1</sub>S transport in intracellular STS substrate availability.
  • As E<sub>1</sub>S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter.
  • All four CRC cell lines rapidly transported E<sub>1</sub>S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP.
  • Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells.
  • Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E<sub>2</sub>) and G1, a GPER agonist, significantly (<i>p</i> < 0.01) increased STS activity.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2009 Feb 1;69(3):914-22 [19141651.001]
  • [Cites] J Clin Endocrinol Metab. 1996 Apr;81(4):1460-4 [8636351.001]
  • [Cites] J Steroid Biochem Mol Biol. 2015 Jun;150:54-63 [25817828.001]
  • [Cites] Eur J Cancer. 2003 Jun;39(9):1251-8 [12763213.001]
  • [Cites] Nat Chem Biol. 2009 Jun;5(6):421-7 [19430488.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5543-9 [17000691.001]
  • [Cites] J Hepatol. 2016 Jan;64(1):44-52 [26220752.001]
  • [Cites] Biomed Pharmacother. 2015 Aug;74:233-42 [26349991.001]
  • [Cites] Hum Pathol. 2001 Sep;32(9):940-4 [11567223.001]
  • [Cites] N Engl J Med. 2004 Mar 4;350(10):991-1004 [14999111.001]
  • [Cites] Cochrane Database Syst Rev. 2005 Jul 20;(3):CD004143 [16034922.001]
  • [Cites] Xenobiotica. 2006 Oct-Nov;36(10-11):963-88 [17118916.001]
  • [Cites] Prostate. 2006 Jun 15;66(9):1005-12 [16541422.001]
  • [Cites] Br J Pharmacol. 2012 Mar;165(5):1260-87 [22013971.001]
  • [Cites] Oncologist. 2007 Apr;12(4):370-4 [17470679.001]
  • [Cites] Endocr Rev. 2015 Oct;36(5):526-63 [26213785.001]
  • [Cites] J Clin Endocrinol Metab. 2010 Jun;95(6):2689-98 [20371658.001]
  • [Cites] Neurogastroenterol Motil. 2016 Mar;28(3):432-42 [26661936.001]
  • [Cites] J Steroid Biochem Mol Biol. 1997 May;62(1):45-51 [9366497.001]
  • [Cites] J Exp Clin Cancer Res. 2010 Nov 08;29:144 [21059236.001]
  • [Cites] Int J Clin Exp Pathol. 2014 Apr 15;7(5):2238-46 [24966932.001]
  • [Cites] Mol Cell Endocrinol. 2014 May 25;389(1-2):71-83 [24530924.001]
  • [Cites] Endocrinology. 2008 Aug;149(8):4035-42 [18450955.001]
  • [Cites] Dig Dis Sci. 2002 Dec;47(12):2720-8 [12498292.001]
  • [Cites] J Biol Chem. 2012 Dec 21;287(52):43234-45 [23135268.001]
  • [Cites] Mol Cell Endocrinol. 2005 Jan 14;229(1-2):39-47 [15607527.001]
  • [Cites] Mol Endocrinol. 2002 Oct;16(10):2283-96 [12351693.001]
  • [Cites] Breast Cancer Res. 2013 Nov 29;15(6):R114 [24289103.001]
  • [Cites] PLoS One. 2011;6(5):e20372 [21625523.001]
  • [Cites] J Steroid Biochem Mol Biol. 2007 Jun-Jul;105(1-5):76-84 [17596930.001]
  • [Cites] Mol Cell Endocrinol. 2008 Feb 13;283(1-2):76-82 [18180093.001]
  • [Cites] Clin Cancer Res. 2006 Mar 1;12(5):1585-92 [16533785.001]
  • [Cites] Breast Cancer Res Treat. 2014 Jul;146(2):273-85 [24928526.001]
  • [Cites] Int J Colorectal Dis. 2013 Jun;28(6):737-49 [23319136.001]
  • [Cites] Scand J Gastroenterol. 2005 Dec;40(12):1454-61 [16293557.001]
  • [Cites] Breast Cancer Res Treat. 2008 Sep;111(1):129-38 [17914670.001]
  • [Cites] Cancer Res. 1996 Oct 1;56(19):4516-21 [8813150.001]
  • [Cites] Drug Metab Pharmacokinet. 2004 Jun;19(3):171-9 [15499184.001]
  • (PMID = 28326039.001).
  • [Journal-full-title] Frontiers in pharmacology
  • [ISO-abbreviation] Front Pharmacol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; GPER / OATP / SLCO / colorectal cancer / estrogen / steroid sulfatase / tamoxifen
  •  go-up   go-down


6. Chubanov V, Ferioli S, Gudermann T: Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium; 2017 Mar 14;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain.
  • Genetic inactivation of this bi-functional protein revealed its crucial role in Ca<sup>2+</sup> signalling, Mg<sup>2+</sup> metabolism, immune responses, cell motility, proliferation and differentiation.
  • Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Ltd. All rights reserved.
  • (PMID = 28356194.001).
  • [ISSN] 1532-1991
  • [Journal-full-title] Cell calcium
  • [ISO-abbreviation] Cell Calcium
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Calcium / Magnesium / TRP channel / TRPM6 / TRPM7 / α-kinase
  •  go-up   go-down


7. Melagraki G, Ntougkos E, Rinotas V, Papaneophytou C, Leonis G, Mavromoustakos T, Kontopidis G, Douni E, Afantitis A, Kollias G: Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). PLoS Comput Biol; 2017 Apr;13(4):e1005372

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] PLoS Comput Biol. 2011 Jul;7(7):e1002101 [21779156.001]
  • [Cites] J Mol Biol. 2003 Jul 18;330(4):891-913 [12850155.001]
  • [Cites] J Med Chem. 2010 Apr 8;53(7):2719-40 [20131845.001]
  • [Cites] Protein Expr Purif. 2012 Nov;86(1):35-44 [22989548.001]
  • [Cites] EMBO J. 1991 Dec;10(13):4025-31 [1721867.001]
  • [Cites] IUBMB Life. 2010 Oct;62(10):724-31 [20979208.001]
  • [Cites] J Exp Med. 1998 Oct 5;188(7):1343-52 [9763613.001]
  • [Cites] Proteins. 2006 Nov 15;65(3):712-25 [16981200.001]
  • [Cites] Nat Protoc. 2006;1(2):550-3 [17191086.001]
  • [Cites] J Med Chem. 2012 Jun 28;55(12):5704-19 [22537153.001]
  • [Cites] Comb Chem High Throughput Screen. 2016;19(4):260-1 [27109184.001]
  • [Cites] J Cheminform. 2013 May 21;5:24 [23694746.001]
  • [Cites] J Chem Theory Comput. 2013 Sep 10;9(9):3878-88 [26592383.001]
  • [Cites] Science. 1985 Aug 30;229(4716):869-71 [3895437.001]
  • [Cites] J Comput Chem. 2004 Jul 15;25(9):1157-74 [15116359.001]
  • [Cites] Cancer Res. 1988 Feb 1;48(3):589-601 [3335022.001]
  • [Cites] J Comput Chem. 2010 Mar;31(4):797-810 [19569205.001]
  • [Cites] Rheumatology (Oxford). 2010 Jul;49(7):1215-28 [20194223.001]
  • [Cites] Mol Inform. 2010 Jul 12;29(6-7):476-88 [27463326.001]
  • [Cites] ChemMedChem. 2011 May 2;6(5):765-8 [21365767.001]
  • [Cites] Curr Pharm Des. 2012;18(30):4679-84 [22650256.001]
  • [Cites] Chem Res Toxicol. 2008 Feb;21(2):374-85 [18095656.001]
  • [Cites] Angew Chem Int Ed Engl. 2012 Sep 3;51(36):9010-4 [22807261.001]
  • [Cites] Mini Rev Med Chem. 2008 Nov;8(13):1384-94 [18991754.001]
  • [Cites] Cytokine Growth Factor Rev. 2002 Aug-Oct;13(4-5):315-21 [12220546.001]
  • [Cites] ChemMedChem. 2006 Jul;1(7):687-8 [16902917.001]
  • [Cites] ACS Med Chem Lett. 2012 Feb 9;3(2):146-150 [22368763.001]
  • [Cites] Science. 1995 May 26;268(5214):1144-9 [7761829.001]
  • [Cites] Nat Chem. 2009 Nov;1(8):596-7 [21378947.001]
  • [Cites] J Biol Chem. 1993 Jun 15;268(17):12526-9 [8509393.001]
  • [Cites] Comb Chem High Throughput Screen. 2009 Jun;12(5):490-6 [19519328.001]
  • [Cites] Biochem Pharmacol. 1999 Sep 1;58(5):851-9 [10449196.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14937-42 [11752442.001]
  • [Cites] Protein Sci. 2000 Sep;9(9):1753-73 [11045621.001]
  • [Cites] Angew Chem Int Ed Engl. 2003 Jun 6;42(22):2462-81 [12800163.001]
  • [Cites] Future Med Chem. 2013 Jan;5(1):69-79 [23256814.001]
  • [Cites] Bioinformatics. 2003 Oct;19 Suppl 2:ii246-55 [14534198.001]
  • [Cites] Nature. 1997 Feb 20;385(6618):729-33 [9034190.001]
  • [Cites] Expert Opin Drug Discov. 2009 Mar;4(3):279-92 [23489126.001]
  • [Cites] Arthritis Rheum. 1993 Dec;36(12):1681-90 [8250987.001]
  • [Cites] N Engl J Med. 2004 May 20;350(21):2167-79 [15152062.001]
  • [Cites] J Chem Inf Model. 2008 Jul;48(7):1337-44 [18564836.001]
  • [Cites] MAbs. 2010 Mar-Apr;2(2):137-47 [20190560.001]
  • [Cites] Arch Pharm (Weinheim). 2014 Nov;347(11):798-805 [25160057.001]
  • [Cites] PLoS Comput Biol. 2014 Jan;10(1):e1003400 [24453952.001]
  • [Cites] J Biol Chem. 2002 Feb 22;277(8):6631-6 [11733492.001]
  • [Cites] MAbs. 2009 Sep-Oct;1(5):422-31 [20065639.001]
  • [Cites] J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [26479676.001]
  • [Cites] J Exp Med. 1998 Sep 7;188(5):997-1001 [9730902.001]
  • [Cites] Cell. 1995 Dec 1;83(5):793-802 [8521496.001]
  • [Cites] Nat Chem Biol. 2006 Jan;2(1):14-5 [16408085.001]
  • [Cites] N Engl J Med. 2009 Aug 20;361(8):756-65 [19671655.001]
  • [Cites] Proteins. 2006 Sep 1;64(4):1058-68 [16838311.001]
  • [Cites] Immunol Rev. 1999 Jun;169:175-94 [10450517.001]
  • [Cites] Cell Death Differ. 2003 Jan;10(1):45-65 [12655295.001]
  • [Cites] J Clin Invest. 2001 Oct;108(7):971-9 [11581298.001]
  • [Cites] Chemosphere. 2016 Feb;144:995-1001 [26439516.001]
  • [Cites] Chem Soc Rev. 2009 Dec;38(12):3289-300 [20449049.001]
  • [Cites] Curr Top Med Chem. 2015;15(18):1827-36 [26002591.001]
  • [Cites] Acc Chem Res. 2000 Dec;33(12):889-97 [11123888.001]
  • [Cites] Curr Dir Autoimmun. 2010;11:1-26 [20173385.001]
  • [Cites] Science. 2005 Nov 11;310(5750):1022-5 [16284179.001]
  • [Cites] PLoS Comput Biol. 2011 Dec;7(12):e1002315 [22215997.001]
  • [Cites] J Chem Inf Model. 2006 Sep-Oct;46(5):1984-95 [16995729.001]
  • [Cites] Chem Biol Drug Des. 2010 Nov;76(5):397-406 [20925691.001]
  • [Cites] Hum Mol Genet. 2012 Feb 15;21(4):784-98 [22068587.001]
  • [Cites] PLoS Comput Biol. 2011 Oct;7(10):e1002189 [22022246.001]
  • [Cites] Protein Expr Purif. 2013 Jul;90(1):9-19 [23623854.001]
  • [Cites] Methods Enzymol. 1985;116:448-56 [4088089.001]
  • [Cites] Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2860-4 [20235259.001]
  • [Cites] J Chem Inf Model. 2011 Jan 24;51(1):69-82 [21117705.001]
  • [Cites] J Comput Aided Mol Des. 2012 Jan;26(1):135-6 [22160554.001]
  • [Cites] Nat Rev Immunol. 2015 Jun;15(6):362-74 [26008591.001]
  • [Cites] ACS Med Chem Lett. 2012 Nov 29;4(1):137-41 [24900576.001]
  • [Cites] Curr Dir Autoimmun. 2010;11:180-210 [20173395.001]
  • [Cites] PLoS Comput Biol. 2015 Apr 07;11(4):e1004074 [25849257.001]
  • [Cites] J Mol Biol. 1993 Dec 5;234(3):779-815 [8254673.001]
  • (PMID = 28426652.001).
  • [ISSN] 1553-7358
  • [Journal-full-title] PLoS computational biology
  • [ISO-abbreviation] PLoS Comput. Biol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


8. Khatra H, Bose C, Sinha S: Discovery of hedgehog antagonists for cancer therapy. Curr Med Chem; 2017 Mar 16;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Most of the reported small molecules primarily antagonize the Smoothened receptor although agents targeting Gli1 transcription factor and Shh ligand have also been discovered.
  • FDA) for the treatment of basal cell carcinoma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28302010.001).
  • [ISSN] 1875-533X
  • [Journal-full-title] Current medicinal chemistry
  • [ISO-abbreviation] Curr. Med. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; GLI / Hedgehog pathway / anticancer / inhibitors / small molecule / smoothened
  •  go-up   go-down


9. Yang L, Hu Z, Luo J, Tang C, Zhang S, Ning W, Dong C, Huang J, Liu X, Zhou HB: Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy. Bioorg Med Chem; 2017 May 04;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy.
  • Furthermore, target molecule 3e could cross the cell membrane, localize and image drug-target interaction in real time without cell washing.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017. Published by Elsevier Ltd.
  • (PMID = 28506582.001).
  • [ISSN] 1464-3391
  • [Journal-full-title] Bioorganic & medicinal chemistry
  • [ISO-abbreviation] Bioorg. Med. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Antiproliferative activity / Breast cancer / Coumarin derivatives / Estrogen receptor / Fluorescent probes
  •  go-up   go-down


10. Daśko M, Przybyłowska M, Rachon J, Masłyk M, Kubiński K, Misiak M, Składanowski A, Demkowicz S: Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors. Eur J Med Chem; 2017 Mar 10;128:79-87
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The inhibitory effects of the synthesized compounds were tested on STS isolated from human placenta and against estrogen receptor-(ER)-positive MCF-7 and T47D cells, as well as ER-negative MDA-MB-231 and SkBr3 cancer cell lines.
  • Compound 6j exhibited the highest potency against the MCF-7 and T47D cell lines (15.9 μM and 8.7 μM, respectively).
  • The GI<sub>50</sub> values of tamoxifen (used as a reference) were 6.8; 10.6; 15.1; 12.5 μM against MCF-7, T47D, MDA-MB-231 and SkBr3 cancer cell lines, respectively.
  • Despite the slightly lower activity of compounds 1 and 2 (both in enzymatic and cell-based experiments) compared to 6g and 6j, analogues 1 and 2 proved to selectively inhibit the growth of ER- and PR-positive cell lines.

  • MedlinePlus Health Information. consumer health - Breast Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28152429.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / 3-(4-(2-(2,5-bis-trifluoromethyl-phenyl)-acetylamino)-phenyl)-coumarin-7-O-sulfamate; 0 / 3-(4-(3,4-difluoro-benzoylamino)-phenyl)-coumarin-7-O-sulfamate; 0 / Coumarins; 0 / Enzyme Inhibitors; 0 / Receptors, Estrogen; 0 / Sulfonamides; 0 / coumarin 7-O-sulfamate; EC 3.1.6.2 / Steryl-Sulfatase
  • [Keywords] NOTNLM ; Breast cancer (major topic) / Coumarin (major topic) / STS inhibitors (major topic) / Steroid sulfatase (major topic) / Sulfamates (major topic)
  •  go-up   go-down


11. Qin HL, Leng J, Youssif BG, Amjad MW, Raja MA, Hussain MA, Hussain Z, Kazmi SN, Bukhari SN: Synthesis and mechanistic studies of curcumin analogs based oximes as potential anticancer agents. Chem Biol Drug Des; 2017 Feb 10;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship.
  • The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines.
  • The compounds 5a and 6a displayed potent activity on various targets such as BRAF<sup>V</sup><sup>600E</sup> and EGFR TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] This article is protected by copyright. All rights reserved.
  • (PMID = 28186369.001).
  • [ISSN] 1747-0285
  • [Journal-full-title] Chemical biology & drug design
  • [ISO-abbreviation] Chem Biol Drug Des
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; tubulin polymerization / Natural compounds / epidermal growth factor receptor (EGFR) / multidrug resistance (MDR) / α, β-unsaturated carbonyl
  •  go-up   go-down


12. Deng T, Peng Y, Zhang R, Wang J, Zhang J, Gu Y, Huang D, Deng D: Water-Solubilizing Hydrophobic ZnAgInSe/ZnS QDs with Tumor-Targeted cRGD-Sulfobetaine-PIMA-Histamine Ligands via a Self-Assembly Strategy for Bioimaging. ACS Appl Mater Interfaces; 2017 Apr 05;9(13):11405-11414

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Exploring the organic-to-aqueous phase transfer of quantum dots (QDs) is significant for achieving their versatile applications in biomedical fields.
  • Herein, the new highly fluorescent tumor-targeted QDs-clusters consisting of ZnAgInSe/ZnS (ZAISe/ZnS) QDs and sulfobetaine-PIMA-histamine (SPH) polymer with the α<sub>ν</sub>β<sub>3</sub> integrin receptor cyclic RGD (c-RGD) were developed via ligand exchange and an accompanying self-assembly process.
  • In the meantime, those clusters also recognized and enriched the cell surface when cocultured with the α<sub>ν</sub>β<sub>3</sub> integrin receptor overexpressed malignant cells (U87MG tumor).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28293947.001).
  • [ISSN] 1944-8252
  • [Journal-full-title] ACS applied materials & interfaces
  • [ISO-abbreviation] ACS Appl Mater Interfaces
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; QDs-clusters / optical imaging / quaternary quantum dots / self-assembly / tumor targeting polymer
  •  go-up   go-down


13. Giordano C, Rovito D, Barone I, Mancuso R, Bonofiglio D, Giordano F, Catalano S, Gabriele B, Andò S: Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21&lt;sup&gt;Cip/WAF1&lt;/sup&gt; gene expression in p53-independent manner. DNA Repair (Amst); 2017 Mar;51:20-30
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We observed that benzofuran compounds bearing a phenyl or tert-butyl substituent α to the methoxycarbonyl group significantly inhibited anchorage-dependent and -independent cell growth, and induced G0/G1 cell cycle arrest in human estrogen receptor alpha positive (MCF-7 and T47D) and in triple negative MDA-MB-231 breast cancer cells, without affecting growth of MCF-10A normal breast epithelial cells.
  • Overall, we provide evidence that the newly tested benzofuran derivatives showed antiproliferative and pro-apoptotic activities against breast cancer cells regardless estrogen receptor status, suggesting their possible clinical development as anticancer agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28108275.001).
  • [ISSN] 1568-7856
  • [Journal-full-title] DNA repair
  • [ISO-abbreviation] DNA Repair (Amst.)
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Anticancer activity / Benzofurans / Breast cancer / p21Cip/WAF1
  •  go-up   go-down


14. Cardozo T, Shmelkov E, Felsovalyi K, Swetnam J, Butler T, Malaspina D, Shmelkov SV: Chemistry-based molecular signature underlying the atypia of clozapine. Transl Psychiatry; 2017 Feb 21;7(2):e1036

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions.
  • Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine.
  • Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia.
  • These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet. 1995 Feb 18;345(8947):456-7 [7853978.001]
  • [Cites] Front Physiol. 2015 Dec 18;6:371 [26733872.001]
  • [Cites] CNS Neurosci Ther. 2011 Apr;17 (2):97-103 [21143431.001]
  • [Cites] Cell Chem Biol. 2016 Jul 21;23(7):862-74 [27427232.001]
  • [Cites] Trends Neurosci. 2009 Apr;32(4):225-32 [19269047.001]
  • [Cites] J Med Chem. 2016 May 12;59(9):4326-41 [26929980.001]
  • [Cites] Nat Rev Drug Discov. 2014 Nov;13(11):813-27 [25287120.001]
  • [Cites] Nucleic Acids Res. 2013 Jan;41(Database issue):D561-5 [23175613.001]
  • [Cites] J Med Chem. 2016 Nov 23;59(22):10285-10290 [27809519.001]
  • [Cites] Nat Rev Drug Discov. 2010 Aug;9(8):628-42 [20577266.001]
  • [Cites] ACS Chem Neurosci. 2013 Jul 17;4(7):1018-25 [24047509.001]
  • [Cites] Anal Chim Acta. 2016 Feb 25;909:41-50 [26851083.001]
  • [Cites] Curr Drug Saf. 2014;9(3):163-95 [24809463.001]
  • [Cites] Drug Discov Today. 2016 Feb;21(2):288-98 [26743596.001]
  • [Cites] Genome Biol. 2009;10(11):R130 [19919682.001]
  • [Cites] Nat Prod Rep. 2015 Aug;32(8):1249-66 [26030402.001]
  • [Cites] J Chem Inf Model. 2016 Jun 27;56(6):1175-83 [27187084.001]
  • [Cites] PLoS One. 2016 Nov 9;11(11):e0165737 [27828998.001]
  • [Cites] Eur Neuropsychopharmacol. 2012 Jun;22(6):387-400 [22300864.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [15075390.001]
  • [Cites] Genes Brain Behav. 2006 Mar;5(2):113-9 [16507002.001]
  • [Cites] Mol Psychiatry. 2005 Jan;10(1):79-104 [15289815.001]
  • [Cites] Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [21948594.001]
  • [Cites] Am J Psychiatry. 2009 Jan;166(1):111; author reply 111-3 [19122018.001]
  • [Cites] Nature. 2012 Jun 10;486(7403):361-7 [22722194.001]
  • [Cites] Oncotarget. 2015 ;6(12 ):9646-56 [25991664.001]
  • [Cites] Nat Rev Drug Discov. 2007 Mar;6(3):189-201 [17330070.001]
  • [Cites] Ann N Y Acad Sci. 2011 Oct;1236:30-43 [22032400.001]
  • [Cites] Nature. 2009 Nov 12;462(7270):175-81 [19881490.001]
  • [Cites] Curr Med Res Opin. 1997;14(1):1-20 [9524789.001]
  • [Cites] Int J Neuropsychopharmacol. 2013 Nov;16(10):2131-44 [23745738.001]
  • [Cites] Cochrane Database Syst Rev. 2008 Jul 16;(3):CD005579 [18646130.001]
  • [Cites] Sci Rep. 2016 Nov 08;6:36205 [27824084.001]
  • (PMID = 28221369.001).
  • [ISSN] 2158-3188
  • [Journal-full-title] Translational psychiatry
  • [ISO-abbreviation] Transl Psychiatry
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


15. Helle J, Keiler AM, Zierau O, Dörfelt P, Vollmer G, Lehmann L, Chittur SV, Tenniswood M, Welsh J, Kretzschmar G: Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus. J Steroid Biochem Mol Biol; 2017 Mar 08;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus.
  • Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion of organic compounds, abundant in exhaust fumes and cigarette smoke.
  • They act by binding to the aryl hydrocarbon receptor (AHR) which induces expression of phase 1 and phase 2 enzymes in the liver.
  • PAH induced AHR activation may also lead to adverse effects by modulating other pathways, for example estrogen receptor (ER) signaling in the female reproductive tract.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Ltd. All rights reserved.
  • (PMID = 28285017.001).
  • [ISSN] 1879-1220
  • [Journal-full-title] The Journal of steroid biochemistry and molecular biology
  • [ISO-abbreviation] J. Steroid Biochem. Mol. Biol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; 17β-estradiol / Aryl hydrocarbon receptor / Polycyclic aromatic hydrocarbons / Uterotrophic assay / Uterus
  •  go-up   go-down


16. Baranyai Z, Krátký M, Vosátka R, Szabó E, Senoner Z, Dávid S, Stolaříková J, Vinšová J, Bősze S: In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur J Med Chem; 2017 Jun 16;133:152-173

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy.
  • In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017. Published by Elsevier Masson SAS.
  • (PMID = 28384546.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Keywords] NOTNLM ; Antimycobacterial activity / Cellular uptake / Fatty acid side chain / Intracellular bacteria / Salicylanilide / Tuftsin based carrier
  •  go-up   go-down


17. Huang L, Wang Y, Ling X, Chaurasiya B, Yang C, Du Y, Tu J, Xiong Y, Sun C: Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydr Polym; 2017 Mar 01;159:178-187

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Pull-LA-CLNPs showed high stability against extensive dilution, high salt concentration and organic solvent.
  • Asialoglycoprotein receptor (ASGPR) competitive inhibition and intracellular distribution studies performed by flow cytometer, fluorescence microscope and confocal laser scanning microscopy (CLSM) showed that Pull-LA-NPs could be efficiently taken up by the cells via ASGPR-mediated endocytosis and mainly distributed in cytoplasm.
  • In conclusion, Pull-LA-CLNPs is a promisingly safe, biodegradable and cell-specific nano-carrier to deliver lipophilic anticancer drugs.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Elsevier Ltd. All rights reserved.
  • (PMID = 28038747.001).
  • [ISSN] 1879-1344
  • [Journal-full-title] Carbohydrate polymers
  • [ISO-abbreviation] Carbohydr Polym
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Disulfide bonds / Pullulan / Reducing sensitivity / Reversible core-crosslinking / Self-targeting
  •  go-up   go-down


18. Nagy L, Márton J, Vida A, Kis G, Bokor É, Kun S, Gönczi M, Docsa T, Tóth A, Antal M, Gergely P, Csóka B, Pacher P, Somsák L, Bai P: Glycogen phosphorylase inhibition improves β-cell function. Br J Pharmacol; 2017 Apr 13;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Glycogen phosphorylase inhibition improves β-cell function.
  • Glycogen metabolism has implications in β-cell function; glycogen degradation can maintain cellular glucose levels, which feeds into catabolism to maintain insulin secretion, and elevated glycogen degradation levels contribute to glucotoxicity.
  • The purpose of this study was to assess whether influencing glycogen metabolism in β-cells by GPi-s impacts β-cell function.
  • Furthermore, GPi treatment induced insulin receptor β (IRβ), AKT, and p70S6K phosphorylation, as well as PDX1 and insulin expression.
  • Conclusion and Implications These data suggest that GPi-s also target β-cells and can be repurposed as agents to preserve β-cell function or even ameliorate β-cell dysfunction in different forms of diabetes.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] This article is protected by copyright. All rights reserved.
  • (PMID = 28409826.001).
  • [ISSN] 1476-5381
  • [Journal-full-title] British journal of pharmacology
  • [ISO-abbreviation] Br. J. Pharmacol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; PDX1 / PI3K / glycogen / glycogen phosphorylase / glycogen phosphorylase inhibitor / insulin / insulin receptor / insulin receptor signaling / insulin synthesis / mitochondria / β-cell
  •  go-up   go-down


19. Rush MD, Walker EM, Prehna G, Burton T, van Breemen RB: Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-α. J Am Soc Mass Spectrom; 2017 Mar;28(3):479-485

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-α.
  • The screening process involves immobilization of a target protein on a magnetic microbead using a variety of possible chemistries, incubation with mixtures of molecules containing possible ligands, a washing step that removes non-bound compounds while a magnetic field retains the beads in the microtiter well, and an organic solvent release step followed by LC-MS analysis.
  • Using retinoid X receptor-α (RXRα) as an example, which is a nuclear receptor and target for anti-inflammation therapy as well as cancer treatment and prevention, a MagMASS assay was developed and compared with an existing screening assay, pulsed ultrafiltration (PUF)-MS.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Med Chem. 1995 Aug 4;38(16):3146-55 [7636877.001]
  • [Cites] Cell. 1992 Jan 24;68(2):397-406 [1310260.001]
  • [Cites] J Med Chem. 2009 Oct 8;52(19):5950-66 [19791803.001]
  • [Cites] J Am Soc Mass Spectrom. 2005 Feb;16(2):271-9 [15694777.001]
  • [Cites] Anal Chem. 2010 Dec 1;82(23):9850-7 [21067198.001]
  • [Cites] Biochemistry. 2011 Jan 11;50(1):93-105 [21049972.001]
  • [Cites] J Nat Prod. 2012 Mar 23;75(3):311-35 [22316239.001]
  • [Cites] Biochem Biophys Res Commun. 2014 Sep 26;452(3):554-9 [25172665.001]
  • [Cites] Anal Chem. 1997 Jun 1;69(11):2159-64 [9183179.001]
  • [Cites] J Chem Biol. 2013 Aug 29;6(4):185-205 [24432134.001]
  • [Cites] Arch Dermatol. 2001 May;137(5):581-93 [11346336.001]
  • [Cites] Biochemistry. 1998 Jul 28;37(30):10691-700 [9692959.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4272-7 [19255444.001]
  • [Cites] Trends Genet. 2001 Oct;17(10):554-6 [11585645.001]
  • [Cites] Int J Mol Sci. 2013 Jan 10;14(1):1232-77 [23306150.001]
  • [Cites] Comb Chem High Throughput Screen. 1998 Apr;1(1):47-55 [10499129.001]
  • [Cites] Mol Divers. 2004;8(1):9-19 [14964784.001]
  • [Cites] Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):30-4 [8380496.001]
  • [Cites] Nature. 2008 Nov 20;456(7220):350-6 [19043829.001]
  • [Cites] Anal Chem. 2002 Aug 15;74(16):3963-71 [12199561.001]
  • [Cites] Curr Protoc Pharmacol. 2009 Sep;Chapter 9:Unit 9.11 [22294405.001]
  • [Cites] Curr Opin Cell Biol. 1998 Jun;10(3):384-91 [9640540.001]
  • [Cites] Mol Cell. 2000 Feb;5(2):289-98 [10882070.001]
  • [Cites] Comb Chem High Throughput Screen. 2008 Jan;11(1):1-6 [18220538.001]
  • [Cites] J Med Chem. 2013 Mar 28;56(6):2581-605 [23472886.001]
  • (PMID = 27966173.001).
  • [ISSN] 1879-1123
  • [Journal-full-title] Journal of the American Society for Mass Spectrometry
  • [ISO-abbreviation] J. Am. Soc. Mass Spectrom.
  • [Language] eng
  • [Grant] United States / NCCIH NIH HHS / AT / P50 AT000155; United States / NCCIH NIH HHS / AT / R01 AT007659; United States / NCCIH NIH HHS / AT / T32 AT007533
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Affinity selection screening / MS-based screening / Magnetic microbeads / Natural products / Pulsed ultrafiltration / Retinoid X receptor-α (RXRα)
  •  go-up   go-down


20. Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW: Development of a human vasopressin V&lt;sub&gt;1a&lt;/sub&gt;-receptor antagonist from an evolutionary-related insect neuropeptide. Sci Rep; 2017 Feb 01;7:41002

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Development of a human vasopressin V<sub>1a</sub>-receptor antagonist from an evolutionary-related insect neuropeptide.
  • We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors.
  • The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity.
  • These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann N Y Acad Sci. 1997 May 30;812:218-21 [9186749.001]
  • [Cites] Mol Pharmacol. 2003 Jun;63(6):1256-72 [12761335.001]
  • [Cites] Br J Pharmacol. 2006 Jan;147 Suppl 1:S27-37 [16402114.001]
  • [Cites] Biochem Biophys Res Commun. 1976 Nov 22;73(2):336-42 [999714.001]
  • [Cites] CNS Neurol Disord Drug Targets. 2006 Apr;5(2):167-79 [16611090.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21183-8 [24248349.001]
  • [Cites] Br J Clin Pharmacol. 2004 Oct;58(4):352-8 [15373927.001]
  • [Cites] ACS Chem Neurosci. 2013 Jul 17;4(7):1026-48 [23659787.001]
  • [Cites] Peptides. 1995;16(6):1141-7 [8532599.001]
  • [Cites] Insect Biochem Mol Biol. 2008 Apr;38(4):380-6 [18342244.001]
  • [Cites] Database (Oxford). 2011 Mar 29;2011:bar009 [21447597.001]
  • [Cites] Nature. 2009 May 21;459(7245):356-63 [19458711.001]
  • [Cites] Nature. 2015 Mar 12;519(7542):247-50 [25533960.001]
  • [Cites] Mol Biol Evol. 2013 Apr;30(4):772-80 [23329690.001]
  • [Cites] Mol Endocrinol. 2007 Feb;21(2):512-23 [17082326.001]
  • [Cites] Bioinformatics. 2012 Dec 15;28(24):3211-7 [23071270.001]
  • [Cites] J Pept Sci. 2006 Mar;12(3):180-9 [16114100.001]
  • [Cites] Prog Brain Res. 2008;170:473-512 [18655903.001]
  • [Cites] Nature. 2012 Mar 21;485(7398):321-6 [22437502.001]
  • [Cites] Nature. 2016 Feb 11;530(7589):237-41 [26840483.001]
  • [Cites] Biochem Soc Trans. 2007 Aug;35(Pt 4):737-41 [17635137.001]
  • [Cites] Brain Res. 1999 Nov 27;848(1-2):1-25 [10612694.001]
  • [Cites] Syst Biol. 2012 Dec 1;61(6):1061-7 [22780991.001]
  • [Cites] J Biol Chem. 2007 Jun 15;282(24):17405-12 [17403667.001]
  • [Cites] BJOG. 2000 Oct;107(10):1309-11 [11028587.001]
  • [Cites] Nucleic Acids Res. 2016 Jan 4;44(D1):D356-64 [26582914.001]
  • [Cites] Nat Rev Drug Discov. 2013 Jan;12 (1):25-34 [23237917.001]
  • [Cites] Comput Appl Biosci. 1993 Dec;9(6):745-56 [8143162.001]
  • [Cites] Genome Res. 2008 Jan;18(1):113-22 [18025266.001]
  • [Cites] Nat Biotechnol. 2011 May 15;29(7):644-52 [21572440.001]
  • [Cites] J Neuroendocrinol. 2012 Apr;24(4):609-28 [22375852.001]
  • [Cites] Nat Protoc. 2015 Jul;10(7):1067-83 [26086408.001]
  • [Cites] Nat Rev Mol Cell Biol. 2002 Sep;3(9):639-50 [12209124.001]
  • [Cites] Mol Psychiatry. 2002;7(9):975-84 [12399951.001]
  • [Cites] Handb Exp Pharmacol. 2005;(169):335-69 [16594264.001]
  • [Cites] Nature. 1984 Apr 12-18;308(5960):652-3 [6709073.001]
  • [Cites] Biochem Biophys Res Commun. 1987 Nov 30;149(1):180-6 [3689410.001]
  • [Cites] Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 [4202581.001]
  • [Cites] Bioinformatics. 2014 May 1;30(9):1312-3 [24451623.001]
  • [Cites] Pediatr Res. 1998 Nov;44(5):615-27 [9803440.001]
  • [Cites] J Mol Biol. 1990 Oct 5;215(3):403-10 [2231712.001]
  • [Cites] J Neurosci. 2005 Dec 7;25(49):11489-93 [16339042.001]
  • [Cites] Bioinformatics. 2011 Mar 15;27(6):863-4 [21278185.001]
  • [Cites] Nature. 2015 Aug 20;524(7565):315-21 [26245379.001]
  • [Cites] Bioinformatics. 2007 May 1;23(9):1061-7 [17332020.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3262-7 [18316733.001]
  • [Cites] Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8705-9 [8710935.001]
  • [Cites] J Med Chem. 2010 Dec 23;53(24):8585-96 [21117646.001]
  • [Cites] Prog Brain Res. 1998;119:501-21 [10074809.001]
  • [Cites] J Am Chem Soc. 2010 Mar 17;132(10):3514-22 [20163143.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 1990;30:501-34 [2160792.001]
  • [Cites] BMC Pregnancy Childbirth. 2007 Jun 01;7 Suppl 1:S10 [17570154.001]
  • [Cites] J Endocrinol. 1998 Feb;156(2):223-9 [9518866.001]
  • [Cites] J Recept Res. 1993;13(1-4):195-214 [8383753.001]
  • [Cites] J Neuroendocrinol. 2014 Jun;26(6):356-69 [24888645.001]
  • [Cites] Drug Discov Today Technol. 2013 Summer;10(2):e229-35 [24050273.001]
  • [Cites] Annu Rev Biochem. 2006;75:743-67 [16756510.001]
  • [Cites] Eur J Biochem. 1977 Nov 1;80(2):319-24 [923582.001]
  • [Cites] Nat Rev Neurosci. 2011 Aug 19;12(9):524-38 [21852800.001]
  • [Cites] Bioorg Med Chem. 2013 Sep 1;21(17):5373-82 [23849205.001]
  • [Cites] PLoS One. 2012;7(3):e32559 [22448224.001]
  • [Cites] EMBO J. 1995 May 15;14(10):2176-82 [7774575.001]
  • [Cites] Future Med Chem. 2012 Sep;4(14):1791-8 [23043476.001]
  • [Cites] Exp Physiol. 2014 Jan;99(1):55-61 [23955310.001]
  • [Cites] ACS Chem Biol. 2014 Jan 17;9(1):156-63 [24147816.001]
  • [Cites] Curr Pharm Des. 2010;16(28):3071-88 [20687879.001]
  • [Cites] Trends Pharmacol Sci. 2015 Jan;36(1):22-31 [25541108.001]
  • [Cites] Bioinformatics. 2007 Nov 1;23(21):2947-8 [17846036.001]
  • [Cites] Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):180-93 [1478777.001]
  • [Cites] Nature. 2001 Feb 15;409(6822):860-921 [11237011.001]
  • (PMID = 28145450.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


21. Plano D, Alcolea V, Sanmartín C, Sharma AK: Methods of selecting combination therapy for colorectal cancer patients: a patent evaluation of US20160025730A1. Expert Opin Ther Pat; 2017 May;27(5):527-538
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Targeted therapy drugs (TTDs) are a valid treatment, epithelial growth factor receptor (EGFR) inhibitors being one of the most commonly used for CRC patients.
  • Areas covered: The invention proposes the use of ErbB protein levels and ErbB receptor dimer formation as biomarkers for selecting, predicting and monitoring CRC patients showing sensitivity to the action of EGFR inhibitors to benefit from the combination therapy of EGFR and HER2 inhibitors.
  • Expert opinion: To assess the clinical applicability of this invention, further studies are needed since the conclusions are derived solely based on the data obtained from only one CRC cell line (Lim1215).
  • [MeSH-minor] Humans. Mitogen-Activated Protein Kinase Kinases / antagonists & inhibitors. Patents as Topic. Receptor, Epidermal Growth Factor / antagonists & inhibitors. Receptor, ErbB-2 / antagonists & inhibitors. Receptor, ErbB-3 / antagonists & inhibitors

  • Genetic Alliance. consumer health - Colorectal Cancer.
  • MedlinePlus Health Information. consumer health - Colorectal Cancer.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28366103.001).
  • [ISSN] 1744-7674
  • [Journal-full-title] Expert opinion on therapeutic patents
  • [ISO-abbreviation] Expert Opin Ther Pat
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, ErbB-2; EC 2.7.10.1 / Receptor, ErbB-3; EC 2.7.12.2 / Mitogen-Activated Protein Kinase Kinases
  • [Keywords] NOTNLM ; Biomarkers / EGFR inhibitors / colorectal cancer / combination therapy / monoclonal antibodies
  •  go-up   go-down


22. Wang J, Lu L, Kok CH, Saunders VA, Goyne JM, Dang P, Leclercq TM, Hughes TP, White DL: Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells. Haematologica; 2017 May;102(5):843-853

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.
  • Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib.
  • Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and <i>BCR-ABL1</i><sup>+</sup> cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity.
  • Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells.
  • Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; <i>P</i><0.0001), suggesting that peroxisome proliferator-activated receptor γ activation has a negative impact on the intracellular uptake of imatinib and consequent BCR-ABL kinase inhibition.
  • The inter-patient variability of peroxisome proliferator-activated receptor γ activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis.
  • Recently, the peroxisome proliferator-activated receptor γ agonist pioglitazone was reported to act synergistically with imatinib, targeting the residual chronic myeloid leukemia stem cell pool.
  • Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells.
  • Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor γ transcriptional activity.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Ferrata Storti Foundation.
  • (PMID = 28154092.001).
  • [ISSN] 1592-8721
  • [Journal-full-title] Haematologica
  • [ISO-abbreviation] Haematologica
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Italy
  •  go-up   go-down


23. Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M: Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol; 2017;8:312

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7.
  • Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Med Chem. 2012 Feb 9;55(3):1106-16 [22239408.001]
  • [Cites] Front Immunol. 2013 Apr 03;4:82 [23565116.001]
  • [Cites] J Immunol. 2005 Mar 1;174(5):3087-97 [15728524.001]
  • [Cites] Nat Med. 2005 Mar;11(3):263-70 [15723075.001]
  • [Cites] Bioconjug Chem. 2015 Aug 19;26(8):1713-23 [26193334.001]
  • [Cites] J Biol Chem. 2004 Mar 26;279(13):12542-50 [14729660.001]
  • [Cites] Bioorg Med Chem Lett. 2013 Feb 1;23(3):669-72 [23265901.001]
  • [Cites] Nat Struct Mol Biol. 2008 Jul;15(7):761-3 [18568036.001]
  • [Cites] J Immunol. 2005 Feb 1;174(3):1259-68 [15661881.001]
  • [Cites] Eur J Immunol. 2006 Jul;36(7):1815-26 [16783850.001]
  • [Cites] Nat Struct Mol Biol. 2015 Feb;22(2):109-15 [25599397.001]
  • [Cites] Bioorg Med Chem Lett. 2011 Oct 1;21(19):5939-43 [21885277.001]
  • [Cites] Eur J Immunol. 2009 Sep;39(9):2537-47 [19662634.001]
  • [Cites] Science. 2008 Apr 18;320(5874):379-81 [18420935.001]
  • [Cites] Science. 2004 Mar 5;303(5663):1526-9 [14976262.001]
  • [Cites] Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2284-8 [21351337.001]
  • [Cites] Science. 2013 Feb 15;339(6121):786-91 [23258413.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5598-603 [15034168.001]
  • [Cites] Nat Rev Immunol. 2015 Sep 15;15(9):529-44 [26292638.001]
  • [Cites] ACS Cent Sci. 2015 Nov 25;1(8):439-448 [26640818.001]
  • [Cites] Science. 2012 Aug 31;337(6098):1111-5 [22821982.001]
  • [Cites] Nat Struct Mol Biol. 2015 Oct;22(10):782-7 [26323037.001]
  • [Cites] J Exp Med. 2012 Feb 13;209(2):235-41 [22312111.001]
  • [Cites] Nature. 2006 May 4;441(7089):101-5 [16625202.001]
  • [Cites] Mol Ther. 2006 Mar;13(3):494-505 [16343994.001]
  • [Cites] Immunity. 2015 Jul 21;43(1):41-51 [26187414.001]
  • [Cites] Nat Immunol. 2002 Feb;3(2):196-200 [11812998.001]
  • [Cites] Nat Immunol. 2004 Jul;5(7):730-7 [15208624.001]
  • [Cites] Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3680-5 [25775551.001]
  • [Cites] Science. 2006 Nov 10;314(5801):994-7 [17038590.001]
  • [Cites] RNA Biol. 2012 Jun;9(6):828-42 [22617878.001]
  • [Cites] Science. 2016 Jun 17;352(6292):1417-20 [27313039.001]
  • [Cites] J Immunol. 2008 Mar 1;180(5):3229-37 [18292547.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(52):9879-83 [19943299.001]
  • [Cites] RNA. 2014 Sep;20(9):1351-5 [25051971.001]
  • [Cites] J Innate Immun. 2015;7(5):482-93 [25823462.001]
  • [Cites] Immunity. 2016 Oct 18;45(4):737-748 [27742543.001]
  • [Cites] Nat Immunol. 2002 Jun;3(6):499 [12032557.001]
  • [Cites] J Immunol. 2002 May 1;168(9):4531-7 [11970999.001]
  • [Cites] Biotechniques. 2007 Aug;43(2):222-7 [17824390.001]
  • [Cites] Nature. 2009 Mar 26;458(7237):514-8 [19158675.001]
  • [Cites] J Immunol. 2006 Dec 1;177(11):8164-70 [17114492.001]
  • [Cites] Science. 2004 Mar 5;303(5663):1529-31 [14976261.001]
  • [Cites] Nat Immunol. 2009 Mar;10(3):266-72 [19158679.001]
  • [Cites] Nat Rev Drug Discov. 2014 Oct;13(10):759-80 [25233993.001]
  • [Cites] Nat Rev Immunol. 2012 Jun 22;12(7):479-91 [22728526.001]
  • [Cites] Nat Biotechnol. 2015 Nov;33(11):1201-10 [26501954.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15779-84 [18840688.001]
  • [Cites] Methods. 2016 Sep 1;107:48-56 [27020891.001]
  • [Cites] Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8098-103 [27382168.001]
  • [Cites] J Biol Chem. 1990 Jul 15;265(20):11960-6 [2164022.001]
  • [Cites] Mol Biol Rep. 1993 Apr;17(3):167-83 [8326953.001]
  • [Cites] Blood. 2011 May 26;117(21):5683-91 [21487111.001]
  • [Cites] Nature. 2009 Mar 26;458(7237):509-13 [19158676.001]
  • [Cites] Nat Biotechnol. 2005 Apr;23(4):457-62 [15778705.001]
  • [Cites] J Am Chem Soc. 2014 Dec 10;136(49):16958-61 [25434769.001]
  • [Cites] J Immunother. 2011 Jan;34(1):1-15 [21150709.001]
  • [Cites] Front Cell Infect Microbiol. 2013 Jul 30;3:37 [23908972.001]
  • [Cites] J Biol Chem. 1981 Oct 10;256(19):10054-60 [7275966.001]
  • [Cites] J Exp Med. 2012 Feb 13;209(2):225-33 [22312113.001]
  • [Cites] J Immunol. 2014 Jun 15;192(12):5963-73 [24813206.001]
  • [Cites] Nature. 2013 Jun 20;498(7454):380-4 [23722158.001]
  • [Cites] J Med Chem. 2010 Jun 10;53(11):4450-65 [20481492.001]
  • [Cites] Eur J Immunol. 1997 Dec;27(12):3135-42 [9464798.001]
  • [Cites] Elife. 2012 Oct 30;1:e00102 [23110254.001]
  • [Cites] J Immunol. 2011 Apr 15;186(8):4794-804 [21398612.001]
  • [Cites] J Immunol. 2015 Jul 15;195(2):411-8 [26138638.001]
  • [Cites] Curr Opin Immunol. 2008 Aug;20(4):389-95 [18652893.001]
  • [Cites] Immunity. 2005 Aug;23(2):165-75 [16111635.001]
  • [Cites] J Immunol. 2012 Sep 15;189(6):2717-21 [22896636.001]
  • [Cites] J Virol. 2015 Mar;89(6):3221-35 [25568203.001]
  • [Cites] Br J Clin Pharmacol. 2016 Sep;82(3):659-72 [27111518.001]
  • [Cites] Science. 2009 Feb 20;323(5917):1057-60 [19131592.001]
  • [Cites] Chem Commun (Camb). 2012 Nov 18;48(89):11014-6 [23037931.001]
  • (PMID = 28392787.001).
  • [Journal-full-title] Frontiers in immunology
  • [ISO-abbreviation] Front Immunol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; bioconjugate / click chemistry / immunostimulation / mRNA / siRNA / small molecules / toll-like receptor
  •  go-up   go-down


24. Coballase-Urrutia E, Cárdenas-Rodríguez N, González-García MC, Núñez-Ramírez E, Floriano-Sánchez E, González-Trujano ME, Fernández-Rojas B, Pedraza-Chaverrí J, Montesinos-Correa H, Rivera-Espinosa L, Sampieri AI, Carmona-Aparicio L: Biochemical and molecular modulation of CCl&lt;sub&gt;4&lt;/sub&gt;-induced peripheral and central damage by &lt;i&gt;Tilia americana&lt;/i&gt; var. &lt;i&gt;mexicana&lt;/i&gt;extracts. Saudi Pharm J; 2017 Mar;25(3):319-331
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In this study, we provide evidence of the protective effects of organic and aqueous extracts (100 mg/kg, i.p.) obtained from the leaves of <i>Tilia americana</i> var.
  • Additionally, we correlated gene expression with antioxidant activity in the experimental groups treated with the organic and aqueous <i>Tilia</i> extracts and observed a non-statistically significant positive correlation.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nutrition. 2009 Jul-Aug;25(7-8):800-11 [19299109.001]
  • [Cites] Bioorg Med Chem. 2002 Mar;10 (3):707-12 [11814859.001]
  • [Cites] Neurobiol Aging. 2002 Sep-Oct;23(5):843-53 [12392789.001]
  • [Cites] PLoS One. 2015 Mar 25;10 (3):e0121549 [25807561.001]
  • [Cites] J Neurosci Res. 1999 Nov 1;58(3):436-41 [10518117.001]
  • [Cites] Biomed Res Int. 2014;2014:245171 [24955350.001]
  • [Cites] Free Radic Biol Med. 2002 Mar 1;32(5):386-93 [11864778.001]
  • [Cites] Prog Neurobiol. 2000 Dec;62(6):649-71 [10880854.001]
  • [Cites] Arch Biochem Biophys. 1997 Jun 1;342(1):126-33 [9185621.001]
  • [Cites] Clin Exp Pharmacol Physiol. 2014 Jun;41(6):416-22 [24684352.001]
  • [Cites] J Ethnopharmacol. 2013 Jul 9;148(2):664-70 [23707208.001]
  • [Cites] J Bacteriol. 1988 Jun;170(6):2511-20 [3131302.001]
  • [Cites] Bioimpacts. 2011;1(4):219-24 [23678431.001]
  • [Cites] Exp Toxicol Pathol. 2011 May;63(4):363-70 [20227265.001]
  • [Cites] Biol Pharm Bull. 1998 Feb;21(2):93-6 [9514598.001]
  • [Cites] Oxid Med Cell Longev. 2014;2014:329172 [25197430.001]
  • [Cites] J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007 Jul-Sep;25(3):185-209 [17763046.001]
  • [Cites] J Ethnopharmacol. 2014 May 14;153(3):744-52 [24680994.001]
  • [Cites] BMC Complement Altern Med. 2011 Jun 24;11:48 [21699742.001]
  • [Cites] Planta Med. 1987 Jun;53(3):239-41 [3628555.001]
  • [Cites] Eur Urol. 2004 Aug;46(2):182-6; discussion 187 [15245811.001]
  • [Cites] Endocr J. 2010;57(4):303-9 [20075562.001]
  • [Cites] Asian Pac J Cancer Prev. 2012;13(6):2647-53 [22938436.001]
  • [Cites] Free Radic Biol Med. 2005 Jul 1;39(1):91-7 [15925281.001]
  • [Cites] Biochem Mol Biol Int. 1996 Oct;40(3):507-14 [8908359.001]
  • [Cites] FEBS Lett. 2010 Jun 3;584(11):2291-7 [20353787.001]
  • [Cites] Oxid Med Cell Longev. 2014;2014:381413 [24876910.001]
  • [Cites] Arch Pharm Res. 1999 Aug;22(4):361-6 [10489874.001]
  • [Cites] Annu Rev Nutr. 2002;22:505-31 [12055356.001]
  • [Cites] J Free Radic Biol Med. 1985;1(1):27-38 [3915301.001]
  • [Cites] Arch Toxicol. 2008 Sep;82(9):615-22 [18253721.001]
  • [Cites] Nutr Res Pract. 2014 Feb;8(1):40-5 [24611104.001]
  • [Cites] Prog Clin Biol Res. 1986;213:249-52 [3012578.001]
  • [Cites] Tissue Cell. 2014 Feb;46(1):78-85 [24388354.001]
  • [Cites] Evid Based Complement Alternat Med. 2013;2013:659165 [23365610.001]
  • [Cites] Toxicol Appl Pharmacol. 1996 Sep;140(1):1-12 [8806864.001]
  • [Cites] Crit Rev Toxicol. 2003;33(2):105-36 [12708612.001]
  • [Cites] Antioxid Redox Signal. 1999 Fall;1(3):339-47 [11229445.001]
  • [Cites] Free Radic Biol Med. 2006 Dec 15;41(12):1727-46 [17157175.001]
  • [Cites] Biol Trace Elem Res. 2012 Dec;150(1-3):242-8 [22639386.001]
  • [Cites] J Pharm Biomed Anal. 2001 Aug;26(1):111-21 [11451648.001]
  • [Cites] Br J Cancer. 2007 Oct 22;97(8):1116-23 [17895890.001]
  • [Cites] Free Radic Biol Med. 2000 Jun 15;28(12):1762-70 [10946218.001]
  • [Cites] Mol Cancer Res. 2002 Dec;1(2):137-46 [12496360.001]
  • [Cites] Pharmacol Ther. 1989;43(1):139-54 [2675128.001]
  • [Cites] J Neurochem. 1976 Apr;26(4):749-59 [9473.001]
  • [Cites] Free Radic Biol Med. 2000 Mar 1;28(5):779-85 [10754274.001]
  • [Cites] Ageing Res Rev. 2004 Jul;3(3):265-301 [15231237.001]
  • [Cites] Toxicol Appl Pharmacol. 2014 Oct 1;280(1):1-9 [25110055.001]
  • [Cites] Antioxid Redox Signal. 2011 Oct 15;15(8):2335-81 [21194351.001]
  • [Cites] J Environ Pathol Toxicol Oncol. 2014;33(2):131-43 [24941296.001]
  • [Cites] Clin Chem. 1978 Jan;24(1):58-73 [22409.001]
  • [Cites] Cancer Res. 2005 May 1;65(9):3745-50 [15867370.001]
  • [Cites] Oxid Med Cell Longev. 2012;2012:165127 [22919437.001]
  • [Cites] Biochim Biophys Acta. 1995 May 24;1271(1):205-9 [7599209.001]
  • [Cites] J Toxicol. 2013;2013:870628 [23554813.001]
  • [Cites] Nutr Res. 2008 Oct;28(10):671-80 [19083475.001]
  • [Cites] J Ethnopharmacol. 2008 Mar 28;116(3):461-8 [18242902.001]
  • [Cites] Redox Rep. 2012;17 (2):47-53 [22564347.001]
  • [Cites] Biochem Biophys Res Commun. 2003 Aug 29;308(3):560-5 [12914787.001]
  • [Cites] Nucleic Acids Res. 2002 May 1;30(9):e36 [11972351.001]
  • [Cites] Free Radic Biol Med. 1990;9(6):515-40 [2079232.001]
  • [Cites] J Biol Chem. 1951 Nov;193(1):265-75 [14907713.001]
  • [Cites] J Med Food. 2014 Jun;17 (6):663-9 [24712752.001]
  • [Cites] Toxicol Appl Pharmacol. 1997 Mar;143(1):120-9 [9073600.001]
  • [Cites] Curr Opin Clin Nutr Metab Care. 2009 Jan;12(1):22-9 [19057183.001]
  • [Cites] Free Radic Biol Med. 2009 Jun 15;46(12 ):1658-67 [19341793.001]
  • [Cites] Exp Gerontol. 2002 Jun;37(6):803-11 [12175480.001]
  • [Cites] Cancer Res. 2004 Apr 1;64(7):2350-6 [15059885.001]
  • [Cites] Free Radic Biol Med. 2008 Dec 1;45(11):1573-80 [18845242.001]
  • [Cites] Semin Liver Dis. 1990 Nov;10 (4):279-84 [2281335.001]
  • [Cites] J Ethnopharmacol. 2010 Jan 8;127(1):91-7 [19799990.001]
  • [Cites] J Ethnopharmacol. 2008 Jul 23;118(2):312-7 [18539420.001]
  • [Cites] J Med Food. 2012 Apr;15(4):335-43 [22353013.001]
  • [Cites] Neuropsychopharmacology. 2001 Apr;24(4):420-9 [11182537.001]
  • [Cites] Toxicology. 2014 Jun 5;320:34-45 [24636977.001]
  • [Cites] J Ethnopharmacol. 2007 Jan 3;109(1):140-5 [16930893.001]
  • [Cites] Neurochem Res. 2000 Jul;25(7):915-21 [10959487.001]
  • [Cites] Redox Biol. 2015 Dec;6:183-97 [26233704.001]
  • [Cites] Clin Invest Med. 2009 Dec 01;32(6):E258 [20003831.001]
  • [Cites] Int J Biochem Cell Biol. 2007;39(1):44-84 [16978905.001]
  • [Cites] Neurochem Res. 1988 Jan;13(1):37-44 [3368028.001]
  • [Cites] J Microencapsul. 2014;31(1):23-30 [23808477.001]
  • (PMID = 28344485.001).
  • [ISSN] 1319-0164
  • [Journal-full-title] Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society
  • [ISO-abbreviation] Saudi Pharm J
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Saudi Arabia
  • [Keywords] NOTNLM ; ALB, serum albumin / ALP, alkaline phosphatase / ALT, alanine aminotransferase / AST, aspartate aminotransferase / Ac.E, ethyl acetate extract group / Antioxidant / Aq.E, aqueous extract group / Aq.E + CCl4, aqueous extract-CCl4 group / BACT, β-actin / BB, total bilirubin / CAT, catalase / CCl3OO•, trichloromethylperoxy radical / CCl4, carbon tetrachloride / CCl4-induced damage / CDNB, 1-chloro-2,4-dinitrobenzene / CK, creatine kinase / COX-2, cyclooxygenase / CREA, creatinine / DMPO, 5,5-dimethyl-1-pyrrolin-N-oxide / EDTA, ethylenediaminetetraacetic acid disodium salt / G6PDH, glucose-6-phosphate dehydrogenase / GAPDH, glyceraldehyde-3 phosphate dehydrogenase / GPx, glutathione peroxidase / GR, glutathione reductase / GSH, reduced form of glutathione / GSSG, oxidized form of glutathione / GST, glutathione-S-transferase / H2O2, hydrogen peroxide / HO-1, heme oxygenase-1 / He.E, hexane extract group / He.E + CCl4, hexane extract-CCl4 group / Hepatoprotective effects / MDA, malondialdehyde / Me.E, methanol extract group / Me.E + CCl4, methanol extract-CCl4 group / NADPH, nicotinamide adenine dinucleotide phosphate / NBT, nitro blue tetrazolium / NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells / Neuroprotective effects / Nrf2, nuclear factor erythroid-derived 2-like 2 / O.O, olive oil group / Oxidative stress / PPARγ, peroxisome proliferator-activated receptor gamma / RNA, ribonucleic acid / ROS, reactive oxygen species / SOD, superoxide dismutase / SOD1, superoxide dismutase-1 / SOD2, superoxide dismutase-1 / TNF-α, tumor necrosis factor / Tilia americana var. mexicana / UK, United Kingdom / USA, United States of America / Var., variant / [Formula: see text], trichloromethyl / bp, base pair / i.p., intraperitoneal administration / iNOS, inducible nitric oxide synthase / oxo8-dG, 8-hydroxy-2′-deoxyguanosine / γ-GLOB, γ-globulin
  •  go-up   go-down


25. Elmeligie S, Ahmed EM, Abuel-Maaty SM, Zaitone SA, Mikhail DS: Design and Synthesis of Pyridazine Containing Compounds with Promising Anticancer Activity. Chem Pharm Bull (Tokyo); 2017;65(3):236-247

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • All the synthesized compounds were screened for their cytotoxic activity in vitro on colon cancer cell line (HCT-116) and breast cancer cell line (MCF-7).
  • The in vitro vascular endothelial growth factor receptor (VEGFR) enzyme inhibition assay was carried out for the most active compounds at a single dose of 10 µM.
  • [MeSH-minor] Animals. Cell Proliferation / drug effects. Dose-Response Relationship, Drug. Drug Screening Assays, Antitumor. Female. HCT116 Cells. Humans. MCF-7 Cells. Mice. Models, Molecular. Molecular Structure. Neoplasms, Experimental / drug therapy. Neoplasms, Experimental / pathology. Receptors, Vascular Endothelial Growth Factor / antagonists & inhibitors. Receptors, Vascular Endothelial Growth Factor / metabolism. Structure-Activity Relationship

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28250345.001).
  • [ISSN] 1347-5223
  • [Journal-full-title] Chemical & pharmaceutical bulletin
  • [ISO-abbreviation] Chem. Pharm. Bull.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Protein Kinase Inhibitors; 0 / Pyridazines; 449GLA0653 / pyridazine; EC 2.7.10.1 / Receptors, Vascular Endothelial Growth Factor
  •  go-up   go-down


26. Yin H, Chen L, Yang B, Bardelang D, Wang C, Lee SMY, Wang R: Fluorescence enhancement and pK&lt;sub&gt;a&lt;/sub&gt; shift of a rho kinase inhibitor by a synthetic receptor. Org Biomol Chem; 2017 May 04;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Fluorescence enhancement and pK<sub>a</sub> shift of a rho kinase inhibitor by a synthetic receptor.
  • Fasudil (FSD), a selective rho kinase (ROCK) inhibitor, was found to form 1 : 1 host-guest inclusion complexes with a synthetic macrocyclic receptor, cucurbit[7]uril (CB[7]), in aqueous solutions, as evidenced by <sup>1</sup>H NMR, photoluminescence and UV-visible spectroscopic titrations, isothermal titration calorimetry (ITC) titration, and electrospray ionization (ESI) mass spectrometry, as well as density functional theory (DFT) molecular modeling.
  • Furthermore, our in vitro study of the bioactivity of FSD in the absence and presence of CB[7] on a neural cell line, SH-SY5Y, showed that the complexation preserved the drug's pro-neurite efficacy.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28470298.001).
  • [ISSN] 1477-0539
  • [Journal-full-title] Organic & biomolecular chemistry
  • [ISO-abbreviation] Org. Biomol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


27. LeVan TD, Smith LM, Heires AJ, Mikuls TR, Meza JL, Weissenburger-Moser LA, Romberger DJ: Interaction of CD14 haplotypes and soluble CD14 on pulmonary function in agricultural workers. Respir Res; 2017 Mar 16;18(1):49

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Agricultural environments are contaminated with organic dusts containing bacterial components.
  • Chronic inhalation of organic dusts is implicated in respiratory diseases.
  • CD14 is a critical receptor for gram-negative lipopolysaccharide; however, its association with respiratory disease among agricultural workers is unknown.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Immunol. 2004 Apr 1;172(7):4470-9 [15034063.001]
  • [Cites] Respir Med. 2009 Sep;103(9):1358-65 [19361972.001]
  • [Cites] Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1157-64 [9351616.001]
  • [Cites] Oral Dis. 2009 Oct;15(7):484-9 [19500269.001]
  • [Cites] Am J Respir Cell Mol Biol. 1999 May;20(5):976-83 [10226067.001]
  • [Cites] Mol Immunol. 2015 Feb;63(2):143-52 [24951397.001]
  • [Cites] Int J Tuberc Lung Dis. 2012 Oct;16(10):1383-7 [23107636.001]
  • [Cites] Inhal Toxicol. 2010 Jul;22(8):648-56 [20540623.001]
  • [Cites] J Allergy Clin Immunol. 2001 Jan;107(1):31-5 [11149987.001]
  • [Cites] Immunol Today. 1992 Jan;13(1):11-6 [1739426.001]
  • [Cites] Respiration. 2013;86(3):183-9 [23949369.001]
  • [Cites] Clin Exp Allergy. 1995 Jan;25(1):73-9 [7728626.001]
  • [Cites] Am J Hum Genet. 2004 Jan;74(1):106-20 [14681826.001]
  • [Cites] J Am Coll Cardiol. 2002 Jul 3;40(1):34-42 [12103253.001]
  • [Cites] J Allergy Clin Immunol. 2010 Jun;125(6):1361-8 [20398919.001]
  • [Cites] Occup Environ Med. 2011 Nov;68(11):826-31 [21389010.001]
  • [Cites] Immunol Today. 1993 Mar;14(3):121-5 [7682078.001]
  • [Cites] J Allergy Clin Immunol. 2015 Feb;135(2):379-85 [25195169.001]
  • [Cites] J Allergy Clin Immunol. 2010 Aug;126(2):232-40 [20579716.001]
  • [Cites] Environ Health Perspect. 1984 Apr;55:97-109 [6376114.001]
  • [Cites] J Rheumatol. 2011 Dec;38(12):2509-16 [21921097.001]
  • [Cites] Am J Respir Crit Care Med. 2009 Mar 1;179(5):363-8 [19096003.001]
  • [Cites] Eur Respir J. 2009 Feb;33(2):273-81 [19010986.001]
  • [Cites] Int J Tuberc Lung Dis. 2013 Nov;17(11):1472-8 [24125453.001]
  • [Cites] J Immunol. 2001 Nov 15;167(10):5838-44 [11698458.001]
  • [Cites] BMC Pulm Med. 2014 Feb 13;14:20 [24524443.001]
  • [Cites] Eur Respir J. 2012 Mar;39(3):573-81 [21885391.001]
  • [Cites] PLoS One. 2014 Apr 18;9(4):e95578 [24748147.001]
  • [Cites] BMC Med Genet. 2011 Jul 11;12:93 [21745379.001]
  • [Cites] J Occup Environ Hyg. 2010 Feb;7(2):94-102 [19953413.001]
  • [Cites] Am J Respir Crit Care Med. 2005 Apr 1;171(7):773-9 [15591473.001]
  • [Cites] Am J Reprod Immunol. 2004 Sep;52(3):204-11 [15373760.001]
  • [Cites] J Toxicol Environ Health B Crit Rev. 2012;15(8):524-41 [23199220.001]
  • [Cites] PLoS One. 2013 Aug 19;8(8):e71237 [23990939.001]
  • [Cites] J Allergy Clin Immunol. 2008 Feb;121(2):434-440.e1 [17949800.001]
  • [Cites] Innate Immun. 2009 Apr;15(2):121-8 [19318422.001]
  • [Cites] Pharmacogenet Genomics. 2006 Apr;16(4):229-36 [16538169.001]
  • [Cites] Eur J Immunol. 1986 Dec;16(12):1583-9 [3493149.001]
  • [Cites] Environ Health Perspect. 2000 Aug;108 Suppl 4:705-12 [10931789.001]
  • [Cites] Genes Immun. 2006 Jan;7(1):77-80 [16395394.001]
  • [Cites] Crit Care. 2010;14(2):209 [20236452.001]
  • [Cites] Ann Agric Environ Med. 2002;9(1):71-8 [12088401.001]
  • (PMID = 28302109.001).
  • [ISSN] 1465-993X
  • [Journal-full-title] Respiratory research
  • [ISO-abbreviation] Respir. Res.
  • [Language] eng
  • [Grant] United States / CSRD VA / CX / I01 CX000434
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Agriculture / CD14 / COPD / Lung function / Polymorphism
  •  go-up   go-down


28. Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, Pinto S, Segal A, Antoine N, Gysemans C, Laureys J, Lemaire K, Gilon P, Cuypers E, Tytgat J, Mathieu C, Schuit F, Rorsman P, Talavera K, Voets T, Vennekens R: Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun; 2017 Mar 31;8:14733

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity.
  • Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages.
  • TRPM5 is a Ca<sup>2+</sup>-activated cation channel expressed in type II taste receptor cells and pancreatic β-cells.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Assay Drug Dev Technol. 2010 Dec;8(6):703-13 [21158685.001]
  • [Cites] Curr Top Med Chem. 2013;13(3):247-57 [23432058.001]
  • [Cites] Phytochemistry. 2003 Nov;64(5):913-21 [14561506.001]
  • [Cites] Chem Senses. 2014 May;39(4):295-311 [24452633.001]
  • [Cites] Pharmacol Ther. 2009 Jan;121(1):41-54 [19000919.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15160-5 [14657398.001]
  • [Cites] Annu Rev Food Sci Technol. 2012;3:353-80 [22224551.001]
  • [Cites] Neurosci Biobehav Rev. 1987 Summer;11(2):181-5 [3614784.001]
  • [Cites] Physiol Rep. 2016 Apr;4(7):null [27053292.001]
  • [Cites] Anal Bioanal Chem. 2013 May;405(13):4397-407 [23341001.001]
  • [Cites] Handb Exp Pharmacol. 2014;222:489-502 [24756718.001]
  • [Cites] Ann N Y Acad Sci. 2009 Jul;1170:91-4 [19686115.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15166-71 [14634208.001]
  • [Cites] J Agric Food Chem. 2012 Jul 11;60(27):6782-93 [22616809.001]
  • [Cites] Nucleic Acids Res. 2011 Jan;39(Database issue):D377-82 [20952410.001]
  • [Cites] Nature. 2005 Dec 15;438(7070):1022-5 [16355226.001]
  • [Cites] FASEB J. 2008 May;22(5):1343-55 [18070821.001]
  • [Cites] BMC Neurosci. 2007 Jul 04;8:49 [17610722.001]
  • [Cites] Exp Biol Med (Maywood). 2007 Jan;232(1):164-73 [17202597.001]
  • [Cites] Physiol Res. 2001;50(6):537-46 [11829314.001]
  • [Cites] Nature. 2013 Mar 14;495(7440):223-6 [23467090.001]
  • [Cites] Eur Rev Med Pharmacol Sci. 2015 Apr;19(8):1388-97 [25967713.001]
  • [Cites] Cell Calcium. 2005 Mar;37(3):267-78 [15670874.001]
  • [Cites] Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5208-13 [20194741.001]
  • [Cites] PLoS One. 2015 Sep 23;10(9):e0138373 [26397098.001]
  • [Cites] Chem Senses. 2002 Nov;27(9):759-68 [12438201.001]
  • [Cites] J Agric Food Chem. 2003 Oct 22;51(22):6618-22 [14558786.001]
  • [Cites] Cell. 2003 Feb 7;112(3):293-301 [12581520.001]
  • [Cites] Eur J Endocrinol. 2015 Apr;172(4):R167-77 [25416725.001]
  • [Cites] Metabolism. 2011 Sep;60(9):1325-33 [21489577.001]
  • [Cites] Diabetologia. 2012 Oct;55(10):2723-32 [22752077.001]
  • [Cites] Rapid Commun Mass Spectrom. 2004;18(1):83-6 [14689563.001]
  • [Cites] Physiol Behav. 2012 Aug 20;107(1):50-8 [22683548.001]
  • [Cites] J Neurosci Methods. 2006 Jun 15;153(2):203-7 [16364450.001]
  • [Cites] Gut. 2009 Mar;58(3):337-46 [19039089.001]
  • [Cites] Diabetes Obes Metab. 2008 Nov;10(11):1074-85 [18435771.001]
  • [Cites] Diabetes. 2002 Feb;51 Suppl 1:S50-2 [11815458.001]
  • [Cites] Nature. 2006 Nov 16;444(7117):288-94 [17108952.001]
  • [Cites] Exp Clin Endocrinol Diabetes. 2014 Jul;122(7):384-6 [25014088.001]
  • [Cites] Nat Neurosci. 2002 Nov;5(11):1169-76 [12368808.001]
  • [Cites] Pflugers Arch. 2010 Jun;460(1):69-76 [20393858.001]
  • [Cites] Physiol Behav. 2009 Oct 19;98(4):481-8 [19666040.001]
  • [Cites] J Clin Invest. 2015 Dec;125(12):4714-28 [26571400.001]
  • [Cites] Lancet. 2005 Apr 9-15;365(9467):1333-46 [15823385.001]
  • [Cites] PLoS One. 2009;4(4):e5106 [19352508.001]
  • [Cites] Diabetologia. 2014 Jul;57(7):1287-90 [24700279.001]
  • (PMID = 28361903.001).
  • [ISSN] 2041-1723
  • [Journal-full-title] Nature communications
  • [ISO-abbreviation] Nat Commun
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


29. Mitchell RF, Hall LP, Reagel PF, McKenna DD, Baker TC, Hildebrand JG: Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb;203(2):99-109

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Traps baited with an attractive mixture of volatile organic compounds from hosts have been of limited success in monitoring invasion sites.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Chem Senses. 1995 Jun;20(3):313-23 [7552040.001]
  • [Cites] Naturwissenschaften. 2010 Dec;97(12 ):1059-66 [20972770.001]
  • [Cites] Biol Lett. 2014 Apr 23;10(4):20140096 [24759369.001]
  • [Cites] PLoS One. 2010 Mar 10;5(3):e9490 [20224823.001]
  • [Cites] PLoS One. 2016 Jan 22;11(1):e0147144 [26800515.001]
  • [Cites] J Neurosci. 2005 Aug 31;25(35):8017-26 [16135759.001]
  • [Cites] Nat Neurosci. 1999 May;2(5):473-8 [10321253.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):E1321-9 [23509267.001]
  • [Cites] Chem Senses. 2011 Jul;36(6):497-8 [21441366.001]
  • [Cites] Annu Rev Entomol. 1989;34:477-501 [2648971.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14383-8 [17761794.001]
  • [Cites] BMC Neurosci. 2012 Jan 03;13:1-17 [22214384.001]
  • [Cites] J Microsc. 2005 Apr;218(Pt 1):52-61 [15817063.001]
  • [Cites] J Chem Ecol. 2014 Dec;40(11-12):1241-50 [25432666.001]
  • [Cites] BMC Genomics. 2013 Mar 21;14:198 [23517120.001]
  • [Cites] Insect Biochem Mol Biol. 2008 Apr;38(4):387-97 [18342245.001]
  • [Cites] Insect Biochem Mol Biol. 2012 Jul;42(7):499-505 [22504490.001]
  • [Cites] Neuron. 2006 Mar 16;49(6):833-44 [16543132.001]
  • [Cites] BMC Genomics. 2016 Jan 22;17 :69 [26800671.001]
  • [Cites] Curr Biol. 2005 Sep 6;15(17):1535-47 [16139208.001]
  • [Cites] Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [15034147.001]
  • [Cites] Annu Rev Neurosci. 2007;30:505-33 [17506643.001]
  • [Cites] Genome Res. 2008 Jan;18(1):188-96 [18025269.001]
  • [Cites] PLoS One. 2015 Apr 09;10(4):e0121504 [25856077.001]
  • [Cites] J Comp Physiol A. 1987 Jun;161(1):23-32 [3039128.001]
  • [Cites] Front Syst Neurosci. 2010 Mar 03;4:3 [20339482.001]
  • [Cites] Elife. 2014 Mar 26;3:e02115 [24670956.001]
  • [Cites] J Chem Ecol. 2008 Mar;34(3):408-17 [18253798.001]
  • [Cites] Environ Entomol. 2016 Feb;45(1):223-8 [26590160.001]
  • [Cites] Environ Entomol. 2010 Feb;39(1):169-76 [20146854.001]
  • [Cites] Chem Senses. 2000 Apr;25(2):119-29 [10781018.001]
  • [Cites] Annu Rev Entomol. 2010;55:521-46 [19743916.001]
  • [Cites] Curr Biol. 2016 May 23;26(10 ):1352-8 [27161501.001]
  • [Cites] Prog Neurobiol. 2011 Nov;95(3):427-47 [21963552.001]
  • [Cites] Cell. 2009 Jan 9;136(1):149-62 [19135896.001]
  • [Cites] Arthropod Struct Dev. 2007 Mar;36(1):23-39 [18089085.001]
  • [Cites] Environ Entomol. 2014 Aug;43(4):1034-44 [24960252.001]
  • [Cites] Environ Entomol. 2012 Dec;41(6):1587-96 [23321107.001]
  • [Cites] Annu Rev Entomol. 2013;58:373-91 [23020622.001]
  • [Cites] Nature. 2008 Mar 27;452(7186):473-7 [18305480.001]
  • [Cites] Curr Biol. 2006 Jan 10;16(1):101-9 [16401429.001]
  • [Cites] Curr Biol. 2005 Sep 6;15(17):1548-53 [16139209.001]
  • [Cites] Environ Entomol. 2014 Oct;43(5):1379-88 [25259696.001]
  • [Cites] Neuron. 2005 Mar 3;45(5):661-6 [15748842.001]
  • [Cites] Genome Biol. 2016 Nov 11;17 (1):227 [27832824.001]
  • [Cites] J Econ Entomol. 2014 Feb;107(1):259-67 [24665709.001]
  • [Cites] J Chem Ecol. 2014 Feb;40(2):169-80 [24510414.001]
  • [Cites] Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [9254694.001]
  • (PMID = 28078425.001).
  • [ISSN] 1432-1351
  • [Journal-full-title] Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
  • [ISO-abbreviation] J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
  • [Language] eng
  • [Grant] United States / NIGMS NIH HHS / GM / K12 GM000708
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; Anoplophora glabripennis / Antennal lobe morphology / Cerambycidae / Olfactory receptor / Pheromone
  •  go-up   go-down


30. Truebenbach I, Gorges J, Kuhn J, Kern S, Baratti E, Kazmaier U, Wagner E, Lächelt U: Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromol Biosci; 2017 Mar 30;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy.
  • The conjugation of small molecule drugs to ligand containing carrier systems facilitates receptor targeted delivery.
  • The folate receptor (FR) constitutes an ideal target for tumor selective therapy, being overexpressed on several tumor types.
  • Their structure activity relationships are assessed in respect to dihydrofolate reductase inhibition, receptor mediated endocytosis, and cytotoxicity.
  • In a combined PT/MTX cytotoxicity study in FR-overexpressing KB and L1210 cells, a 2-arm MTX-PT construct or the 4-arm analog displays the highest potency in the respective cell lines.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • (PMID = 28371444.001).
  • [ISSN] 1616-5195
  • [Journal-full-title] Macromolecular bioscience
  • [ISO-abbreviation] Macromol Biosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; combination therapy / drug conjugate / methotrexate / pretubulysin / targeting
  •  go-up   go-down


31. Kobayashi T, Koizumi T, Kobayashi M, Ogura J, Horiuchi Y, Kimura Y, Kondo A, Furugen A, Narumi K, Takahashi N, Iseki K: Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2. Drug Metab Pharmacokinet; 2017 Apr;32(2):157-163
Hazardous Substances Data Bank. TAUROCHOLIC ACID .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2.
  • Organic anion transporting polypeptide 2B1 (OATP2B1) is the major uptake transporter in the intestine, and transports various clinically used therapeutic agents.
  • Insulin acts through the insulin receptor in targeted cells, and Rab8A is one of the insulin signaling pathways.
  • The small intestine in humans also expresses insulin receptor and Rab8A.
  • Caco-2 cells treated with insulin showed increased OATP2B1 expression at the cell surface.
  • [MeSH-major] Insulin / pharmacology. Organic Anion Transporters / metabolism

  • MedlinePlus Health Information. consumer health - Diabetes Medicines.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
  • (PMID = 28318878.001).
  • [ISSN] 1880-0920
  • [Journal-full-title] Drug metabolism and pharmacokinetics
  • [ISO-abbreviation] Drug Metab. Pharmacokinet.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Insulin; 0 / Organic Anion Transporters; 0 / SLCO2B1 protein, human; 5E090O0G3Z / Taurocholic Acid
  • [Keywords] NOTNLM ; Caco-2 cell / Estrone-3-sulfate / Insulin / Intestinal absorption / OATP2B1
  •  go-up   go-down


32. Sapudom J, Ullm F, Martin S, Kalbitzer L, Naab J, Möller S, Schnabelrauch M, Anderegg U, Schmidt S, Pompe T: Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices. Acta Biomater; 2017 Mar 01;50:259-270
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : Hyaluronan (HA) and its principal receptor CD44 are known to be involved in regulating tumor cell dissemination and metastasis.
  • To elucidate HA dependent tumor cell behavior, BRO melanoma cell lines with and without CD44 receptor expression were used for in vitro cell experiments.
  • We demonstrated that only soluble LMW-HA promoted cell proliferation in a CD44 dependent manner, while HMW-HA and immobilized LMW-HA did not.
  • Furthermore, an enhanced cell invasion was found only for immobilized LMW-HA.
  • Both findings correlated with a very strong and specific adhesive interaction of LMW-HA and CD44+ cells quantified in single cell adhesion measurements using soft colloidal force spectroscopy.
  • Mimicking in that way important in vivo features of tumor microenvironments, we found that only low molecular weight HA (LMW-HA) in soluble form promoted proliferation of a melanoma cell line (BRO), while it enhanced cell invasion in bound form.
  • The molecular weight specificity of LMW-HA was verified to be CD44 receptor dependent and was correlated to adhesive ligand-receptor interactions in quantitative colloidal force spectroscopy at single cell level.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  • (PMID = 27965172.001).
  • [ISSN] 1878-7568
  • [Journal-full-title] Acta biomaterialia
  • [ISO-abbreviation] Acta Biomater
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; CD44 receptor / Collagen / Extracellular matrix / Hyaluronan / Melanoma cells
  •  go-up   go-down


33. Win-Shwe TT, Kyi-Tha-Thu C, Moe Y, Maekawa F, Yanagisawa R, Furuyama A, Tsukahara S, Fujitani Y, Hirano S: Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice. Nanomaterials (Basel); 2015 Jun 30;5(3):1147-1162

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Nano-Sized Secondary Organic Aerosol of Diesel Engine Exhaust Origin Impairs Olfactory-Based Spatial Learning Performance in Preweaning Mice.
  • The aims of our present study were to establish a novel olfactory-based spatial learning test and to examine the effects of exposure to nano-sized diesel exhaust-origin secondary organic aerosol (SOA), a model environmental pollutant, on the learning performance in preweaning mice.
  • The expression levels of neurological markers such as the <i>N</i>-methyl-d-aspartate (NMDA) receptor subunits NR1 and NR2B, and of immunological markers such as TNF-α, COX2, and Iba1 were significantly increased in the hippocampi of the DE-SOA-exposed preweaning mice as compared to the control mice.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Toxicol Appl Pharmacol. 2012 Aug 1;262(3):355-62 [22659509.001]
  • [Cites] Lancet. 1997 May 31;349(9065):1582-7 [9174559.001]
  • [Cites] JAMA. 2002 Mar 6;287(9):1132-41 [11879110.001]
  • [Cites] Behav Neural Biol. 1994 Jan;61(1):1-18 [7907468.001]
  • [Cites] Neurosci Res. 1996 Jan;24(2):117-22 [8929917.001]
  • [Cites] Part Fibre Toxicol. 2008 Mar 11;5:4 [18334019.001]
  • [Cites] Arch Environ Health. 2000 Jan-Feb;55(1):11-7 [10735514.001]
  • [Cites] Cell. 1996 Dec 27;87(7):1327-38 [8980238.001]
  • [Cites] Toxicol Appl Pharmacol. 2008 Jan 15;226(2):192-8 [17950771.001]
  • [Cites] Cell. 1995 Jun 16;81(6):905-15 [7781067.001]
  • [Cites] J Toxicol Sci. 2013 Feb;38(1):71-82 [23358141.001]
  • [Cites] Eur Respir J. 2001 Mar;17(3):428-35 [11405521.001]
  • [Cites] Indoor Air. 2012 Oct;22(5):415-26 [22372506.001]
  • [Cites] Nature. 2010 Oct 14;467(7317):824-7 [20944744.001]
  • [Cites] Inhal Toxicol. 2011 Aug;23 Suppl 2:84-94 [21401387.001]
  • [Cites] Brain Cogn. 2011 Dec;77(3):345-55 [22032805.001]
  • [Cites] Brain Res. 1996 Mar 4;711(1-2):234-40 [8680867.001]
  • [Cites] Nanotoxicology. 2012 Aug;6(5):543-53 [21663545.001]
  • [Cites] Environ Health Perspect. 1993 Dec;101 Suppl 4:187-91 [8206028.001]
  • [Cites] Int J Mol Sci. 2011;12(9):6267-80 [22016657.001]
  • [Cites] Environ Sci Technol. 2010 Feb 15;44(4):1424-30 [20092303.001]
  • [Cites] Neuroreport. 2000 Apr 7;11(5):1051-5 [10790881.001]
  • [Cites] Annu Rev Biochem. 1992;61:559-601 [1323238.001]
  • [Cites] Inhal Toxicol. 2009 Feb;21(3):200-9 [18991064.001]
  • [Cites] Environ Sci Technol. 2012 Jan 17;46(2):704-12 [22191732.001]
  • [Cites] Int J Environ Res Public Health. 2014 Oct 30;11(11):11286-307 [25361045.001]
  • [Cites] Neurotoxicology. 2008 Nov;29(6):940-7 [18926851.001]
  • [Cites] Inhal Toxicol. 2009 Aug;21(10):828-36 [19653804.001]
  • [Cites] Mediators Inflamm. 2014;2014:861231 [24966471.001]
  • [Cites] Toxicol Pathol. 2004 Nov-Dec;32(6):650-8 [15513908.001]
  • [Cites] Front Cell Neurosci. 2014 Sep 02;8:189 [25228858.001]
  • [Cites] Toxicol Lett. 2006 May 25;163(2):153-60 [16293374.001]
  • [Cites] Nature. 1995 Nov 9;378(6553):182-6 [7477320.001]
  • [Cites] Toxicol Pathol. 2008 Feb;36(2):289-310 [18349428.001]
  • [Cites] Science. 1996 Dec 6;274(5293):1678-83 [8939850.001]
  • [Cites] Cell. 1995 Jun 16;81(6):891-904 [7781066.001]
  • [Cites] Brain Cogn. 2008 Nov;68(2):117-27 [18550243.001]
  • (PMID = 28347057.001).
  • [Journal-full-title] Nanomaterials (Basel, Switzerland)
  • [ISO-abbreviation] Nanomaterials (Basel)
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; developmental neurotoxicity / diesel exhaust / hippocampus / nanotoxicity / olfactory-based learning / preweaning mice / secondary organic aerosol
  •  go-up   go-down


34. Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, Los Rios C, Romero A, Egea J: Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med; 2017 Mar;104:32-53

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca<sup>2+</sup> dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death.
  • Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28065781.001).
  • [ISSN] 1873-4596
  • [Journal-full-title] Free radical biology & medicine
  • [ISO-abbreviation] Free Radic. Biol. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Brain ischemia / Free radicals / Melatonin / Neuroprotection
  •  go-up   go-down


35. Kandhasamy S, Ramanathan G, Muthukumar T, Thyagarajan S, Umamaheshwari N, Santhanakrishnan VP, Sivagnanam UT, Perumal PT: Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. Mater Sci Eng C Mater Biol Appl; 2017 May 01;74:70-85

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines.
  • Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines.
  • In addition, molecular docking (PDB ID: 1T46) studies were performed to predict the binding affinity of ligand with receptor.
  • Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28254336.001).
  • [ISSN] 1873-0191
  • [Journal-full-title] Materials science & engineering. C, Materials for biological applications
  • [ISO-abbreviation] Mater Sci Eng C Mater Biol Appl
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Electrospinning / Hep-2 / MCF-7 / Nanofibrous scaffold / Nanomaterial / Tissue engineering
  •  go-up   go-down


36. Solntseva EI, Bukanova JV: Use-dependent inhibition of glycine-activated chloride current in rat neurons by β-amyloid peptide pretreated with hexafluoroisopropanol. Neuroreport; 2017 May 05;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Hexafluoroisopropanol (HFIP) is a nonpolar organic solvent that is often used to prepare β-amyloid peptide (Aβ) samples.
  • Transmembrane currents were recorded using a conventional patch-clamp technique in the whole-cell configuration.
  • Second, new information on the glycine receptor ability to interact with drugs in use-dependent mode was obtained.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28489663.001).
  • [ISSN] 1473-558X
  • [Journal-full-title] Neuroreport
  • [ISO-abbreviation] Neuroreport
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


37. Mahmoud S, Planes MD, Cabedo M, Trujillo C, Rienzo A, Caballero-Molada M, Sharma SC, Montesinos C, Mulet JM, Serrano R: TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett; 2017 May 09;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H<sup>+</sup> -ATPase Pma1 (which drives nutrient and K<sup>+</sup> uptake and regulates pH homeostasis).
  • Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector.
  • Mutation of either Sit4 or Tco89, a non-essential subunit of TORC1, decreases proton efflux, K<sup>+</sup> uptake, intracellular pH, cell growth, and tolerance to weak organic acids.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] This article is protected by copyright. All rights reserved.
  • (PMID = 28486745.001).
  • [ISSN] 1873-3468
  • [Journal-full-title] FEBS letters
  • [ISO-abbreviation] FEBS Lett.
  • [Language] eng
  • [Publication-type] Letter
  • [Publication-country] England
  • [Keywords] NOTNLM ; H+-ATPase / K+ transport / Sit4 / intracellular pH
  •  go-up   go-down


38. Meng W, Wang S, Yao L, Zhang N, Li D: Muscarinic Receptors Are Responsible for the Cholinergic Modulation of Projection Neurons in the Song Production Brain Nucleus RA of Zebra Finches. Front Cell Neurosci; 2017;11:51

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Our previous study showed that carbachol, a non-selective cholinergic receptor agonist, modulates the electrophysiology of RA projection neurons (PNs), indicating that cholinergic modulation of RA may play an important role in song production.
  • However, the receptor mechanisms underlying these effects are poorly understood.
  • In the present study, we investigated the electrophysiological properties of two acetylcholine receptors on the RA PNs of adult male zebra finches using <i>in vitro</i> whole-cell current clamp.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Science. 2014 Dec 12;346(6215):1256846 [25504733.001]
  • [Cites] Brain Res. 2004 Aug 20;1018(1):97-105 [15262210.001]
  • [Cites] Neurosci Lett. 2011 Oct 10;503(3):256-60 [21896311.001]
  • [Cites] J Biosci. 2004 Jun;29(2):189-200 [15286416.001]
  • [Cites] J Neurophysiol. 2010 Feb;103(2):733-45 [19939956.001]
  • [Cites] J Neurosci. 2009 May 20;29(20):6558-67 [19458226.001]
  • [Cites] Dev Neurobiol. 2016 Jan;76(1):3-18 [25864444.001]
  • [Cites] J Physiol. 1992 Apr;449:121-54 [1522506.001]
  • [Cites] BMC Neurosci. 2012 Apr 27;13:42 [22540185.001]
  • [Cites] Ann N Y Acad Sci. 2004 Jun;1016:749-77 [15313804.001]
  • [Cites] Neurosci Lett. 2015 Mar 4;589:37-41 [25596438.001]
  • [Cites] Neurosci Lett. 2011 Jan 7;487(2):234-9 [20969922.001]
  • [Cites] J Neurophysiol. 2008 Jul;100(1):8-18 [18463188.001]
  • [Cites] Neuron. 2001 Dec 6;32(5):899-910 [11738034.001]
  • [Cites] J Neurobiol. 2001 Feb 5;46(2):142-65 [11153015.001]
  • [Cites] Science. 1996 Sep 27;273(5283):1871-5 [8791594.001]
  • [Cites] J Neurosci Res. 2004 May 15;76(4):475-80 [15114619.001]
  • [Cites] J Comp Neurol. 1988 Aug 8;274(2):255-64 [3209741.001]
  • [Cites] J Neurosci. 2008 Oct 8;28(41):10370-9 [18842896.001]
  • [Cites] Nature. 2002 May 16;417(6886):351-8 [12015616.001]
  • [Cites] PLoS One. 2008;3(10):e3440 [18941504.001]
  • [Cites] J Comp Neurol. 1981 Oct 20;202(2):211-9 [7298898.001]
  • [Cites] J Comp Neurol. 1976 Feb 15;165(4):457-86 [1262540.001]
  • [Cites] Brain Behav Evol. 1994;44(4-5):265-78 [7842285.001]
  • [Cites] J Neurophysiol. 2000 Nov;84(5):2502-13 [11067993.001]
  • [Cites] J Neurophysiol. 1998 Mar;79(3):1579-82 [9497434.001]
  • [Cites] J Neurophysiol. 2010 Mar;103(3):1397-409 [20071625.001]
  • [Cites] J Neurophysiol. 2002 Dec;88(6):3315-30 [12466449.001]
  • [Cites] Neuron. 2003 Dec 18;40(6):1213-26 [14687554.001]
  • [Cites] J Neurophysiol. 1999 Jun;81(6):3007-20 [10368416.001]
  • [Cites] Neural Plast. 2016;2016:7246827 [26904300.001]
  • [Cites] Acta Neurobiol Exp (Wars). 1996;56(4):863-72 [9033122.001]
  • [Cites] PeerJ. 2014 Apr 10;2:e352 [24765586.001]
  • [Cites] J Neurophysiol. 2009 Aug;102(2):774-85 [19474169.001]
  • [Cites] Cereb Cortex. 2010 Nov;20(11):2739-48 [20181623.001]
  • [Cites] J Neurophysiol. 2014 Jan;111(2):258-72 [24155009.001]
  • [Cites] J Comp Neurol. 1990 Aug 22;298(4):431-42 [2229474.001]
  • [Cites] Neuroreport. 1999 Jan 18;10(1):165-9 [10094156.001]
  • (PMID = 28293176.001).
  • [Journal-full-title] Frontiers in cellular neuroscience
  • [ISO-abbreviation] Front Cell Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; RA / cholinergic modulation / mAChR / nAChR / projection neuron / song premotor nucleus / zebra finch
  •  go-up   go-down


39. Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, Manna M, Martinez-Seara H, Hildebrand PW, Martín M, Selent J: Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun; 2017 Feb 21;8:14505

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Membrane cholesterol access into a G-protein-coupled receptor.
  • Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs).
  • Crystal structures of prototypical GPCRs such as the adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid.
  • We confirm the presence of cholesterol inside the receptor by chemical modification of the A<sub>2A</sub>R interior in a biotinylation assay.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Chem Biol. 2012 Jan 08;8(2):211-20 [22231273.001]
  • [Cites] Science. 2014 Apr 4;344(6179):58-64 [24603153.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5247-52 [22431612.001]
  • [Cites] PLoS One. 2009;4(2):e4382 [19194506.001]
  • [Cites] Biochemistry. 1990 Oct 2;29(39):9143-9 [2271584.001]
  • [Cites] Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11021-4 [24038729.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3463-72 [23151510.001]
  • [Cites] J Biol Chem. 2002 Jun 7;277(23):20139-45 [11889130.001]
  • [Cites] Biochem Pharmacol. 2007 Jul 15;74(2):236-55 [17521619.001]
  • [Cites] Science. 2008 Nov 21;322(5905):1211-7 [18832607.001]
  • [Cites] J Mol Biol. 2009 Oct 2;392(4):1102-15 [19665031.001]
  • [Cites] Methods Mol Biol. 2008;426:145-59 [18542861.001]
  • [Cites] Nature. 2008 Jul 10;454(7201):183-7 [18563085.001]
  • [Cites] Nature. 2016 Jul 28;535(7613):517-22 [27437577.001]
  • [Cites] Biochim Biophys Acta. 1996 Sep 13;1297(1):77-82 [8841383.001]
  • [Cites] Glycoconj J. 2009 Aug;26(6):711-20 [19052861.001]
  • [Cites] Neurochem Res. 2007 Jun;32(6):1056-70 [17401671.001]
  • [Cites] J Biomol Tech. 2008 Sep;19(4):258-66 [19137116.001]
  • [Cites] Biophys J. 2011 Jan 19;100(2):L11-3 [21244820.001]
  • [Cites] Phys Rev A Gen Phys. 1986 May;33(5):3628-3631 [9897103.001]
  • [Cites] J Neurosci Res. 2005 Jul 15;81(2):275-83 [15920744.001]
  • [Cites] J Phys Chem B. 2010 Jun 17;114(23):7830-43 [20496934.001]
  • [Cites] Nat Chem Biol. 2016 Jan;12 (1):35-9 [26571351.001]
  • [Cites] Science. 2007 Nov 23;318(5854):1258-65 [17962520.001]
  • [Cites] J Biol Chem. 2012 Oct 12;287(42):35470-83 [22875855.001]
  • [Cites] Biol Psychiatry. 2007 Jul 1;62(1):17-24 [17188654.001]
  • [Cites] J Biol Chem. 1990 Dec 5;265(34):20727-30 [2174424.001]
  • [Cites] Sci Rep. 2016 Jun 23;6:28534 [27334845.001]
  • [Cites] Biochem Pharmacol. 2007 Feb 15;73(4):534-49 [17141202.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10355-9 [7937955.001]
  • [Cites] Prog Neurobiol. 2007 Dec;83(5):293-309 [17826884.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14418-23 [18768796.001]
  • [Cites] Curr Pharm Des. 2008;14(15):1512-24 [18537674.001]
  • [Cites] J Biol Chem. 2005 Jan 21;280(3):2176-85 [15537636.001]
  • [Cites] J Biol Chem. 2010 Jun 4;285(23 ):17954-64 [20220143.001]
  • [Cites] Mol Med. 2011 Sep-Oct;17 (9-10):1107-18 [21717034.001]
  • [Cites] Structure. 2009 Dec 9;17(12):1660-8 [20004169.001]
  • [Cites] Eur J Pharmacol. 2009 Mar 15;606(1-3):50-60 [19374848.001]
  • [Cites] Brain Res Mol Brain Res. 2002 Feb 28;99(1):54-66 [11869809.001]
  • [Cites] J Psychiatr Res. 2013 May;47(5):636-43 [23428160.001]
  • [Cites] BMC Bioinformatics. 2006 Jun 22;7:316 [16792811.001]
  • [Cites] Schizophr Res. 2007 Mar;91(1-3):37-50 [17236749.001]
  • [Cites] J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [8744570.001]
  • [Cites] Nat Commun. 2014 Sep 10;5:4801 [25205354.001]
  • [Cites] J Phys Chem B. 1998 Apr 30;102(18):3586-616 [24889800.001]
  • [Cites] Science. 2012 Jul 13;337(6091):232-6 [22798613.001]
  • [Cites] Sci Rep. 2016 Jan 22;6:19839 [26796668.001]
  • [Cites] J Immunol. 2002 Apr 15;168(8):4121-6 [11937572.001]
  • [Cites] Biochemistry. 1997 Sep 9;36(36):10959-74 [9283088.001]
  • [Cites] Exp Cell Res. 2003 Nov 15;291(1):36-45 [14597406.001]
  • [Cites] Chem Phys Lipids. 2016 Sep;199:61-73 [27108066.001]
  • [Cites] Bioinformatics. 2012 Aug 15;28(16):2193-4 [22730430.001]
  • [Cites] Curr Opin Struct Biol. 2011 Dec;21(6):802-7 [22036833.001]
  • [Cites] Science. 2012 Feb 17;335(6070):851-5 [22344443.001]
  • [Cites] J Pharmacol Exp Ther. 2006 Jun;317(3):1295-306 [16505160.001]
  • [Cites] Pharmacol Rev. 2013 Dec 11;66(1):102-92 [24335194.001]
  • [Cites] J Alzheimers Dis. 2010;19(2):489-502 [20110596.001]
  • [Cites] CNS Neurol Disord Drug Targets. 2012 Sep;11(6):664-74 [22963436.001]
  • [Cites] Psychiatry Res. 2008 Sep 30;160(3):285-99 [18715653.001]
  • [Cites] J Am Chem Soc. 2012 Oct 10;134(40):16512-5 [23005256.001]
  • [Cites] J Chem Theory Comput. 2009 Jun 9;5(6):1632-9 [26609855.001]
  • [Cites] J Phys Chem B. 2012 Jan 12;116(1):203-10 [22136112.001]
  • [Cites] Mol Pharmacol. 2009 Jan;75(1):1-12 [18945819.001]
  • [Cites] J Chromatogr A. 2010 Jun 18;1217(25):4087-99 [20307888.001]
  • [Cites] Cell Signal. 2014 Dec;26(12):2614-20 [25152366.001]
  • [Cites] Biophys J. 2009 Jul 8;97(1):50-8 [19580743.001]
  • [Cites] J Phys Chem B. 2010 Sep 23;114(37):12046-57 [20804205.001]
  • [Cites] Subcell Biochem. 2010;51:439-66 [20213554.001]
  • [Cites] Protein Sci. 2014 Jan;23(1):1-22 [24155031.001]
  • [Cites] Cardiovasc Res. 2013 Mar 15;97(4):642-52 [23241314.001]
  • [Cites] Structure. 2008 Jun;16(6):897-905 [18547522.001]
  • (PMID = 28220900.001).
  • [ISSN] 2041-1723
  • [Journal-full-title] Nature communications
  • [ISO-abbreviation] Nat Commun
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


40. Elshenawy OH, Abdelhamid G, Soshilov AA, Denison MS, El-Kadi AO: Down-regulation of cytochrome P450 1A1 by monomethylarsonous acid in human HepG2 cells. Toxicol Lett; 2017 Mar 15;270:34-50

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Arsenic is capable of modulating the expression of aryl hydrocarbon receptor (AhR)-regulated genes, nevertheless, whether its trivalent organic metabolites have similar effects or not need to be investigated.
  • [MeSH-minor] Arsenites / toxicity. Basic Helix-Loop-Helix Transcription Factors / genetics. Basic Helix-Loop-Helix Transcription Factors / metabolism. Cell Survival / drug effects. Heme Oxygenase-1 / genetics. Heme Oxygenase-1 / metabolism. Hep G2 Cells. Humans. Oxidative Stress / drug effects. Polychlorinated Dibenzodioxins / toxicity. Protein Processing, Post-Translational. Protein Stability / drug effects. RNA, Messenger / genetics. RNA, Messenger / metabolism. Reactive Oxygen Species / metabolism. Receptors, Aryl Hydrocarbon / genetics. Receptors, Aryl Hydrocarbon / metabolism. Signal Transduction. Sodium Compounds / toxicity

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28189647.001).
  • [ISSN] 1879-3169
  • [Journal-full-title] Toxicology letters
  • [ISO-abbreviation] Toxicol. Lett.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / AHR protein, human; 0 / Arsenites; 0 / Basic Helix-Loop-Helix Transcription Factors; 0 / Organometallic Compounds; 0 / Polychlorinated Dibenzodioxins; 0 / RNA, Messenger; 0 / Reactive Oxygen Species; 0 / Receptors, Aryl Hydrocarbon; 0 / Sodium Compounds; 0 / monomethylarsonous acid; 48OVY2OC72 / sodium arsenite; EC 1.14.14.1 / CYP1A1 protein, human; EC 1.14.14.1 / Cytochrome P-450 CYP1A1; EC 1.14.14.18 / HMOX1 protein, human; EC 1.14.14.18 / Heme Oxygenase-1
  • [Keywords] NOTNLM ; Arsenite / Aryl hydrocarbon receptor / CYP1A1 / Free radicals / Monomethylarsonous acid / ROS / XRE
  •  go-up   go-down


41. Koprivanacz K, Tőke O, Besztercei B, Juhász T, Radnai L, Merő B, Mihály J, Péter M, Balogh G, Vígh L, Buday L, Liliom K: The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Cell Signal; 2017 Apr;32:66-75
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • They also exert several G protein-coupled receptor-independent functions but their intracellular target proteins are mostly unknown.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28104445.001).
  • [ISSN] 1873-3913
  • [Journal-full-title] Cellular signalling
  • [ISO-abbreviation] Cell. Signal.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Caskin1 / SH3 domain / lipid signaling / lysophosphatidic acid / proline-rich motif / protein-lipid interaction
  •  go-up   go-down


42. Jeong SC, Cho Y, Song MK, Lee E, Ryu JC: Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity. Environ Toxicol; 2017 May;32(5):1628-1636
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Epidermal growth factor receptor (EGFR)-MAPK-nuclear factor(NF)-κB-IL8: A possible mechanism of particulate matter(PM) 2.5-induced lung toxicity.
  • In this study, we investigated whether exposure to particulate matter (PM) 2.5, a PM with an aerodynamic diameter of less than 2.5 µm, enhances inflammation-related toxicity in the human respiratory system through activation of the epidermal growth factor receptor (EGFR) signaling pathway.
  • Through cytokine antibody array analysis of two extracts of PM<sub>2.5</sub> [water (W-PM<sub>2.5</sub> ) and organic (O-PM<sub>2.5</sub> ) soluble extracts] exposed to A549 (human alveolar epithelial cell), we identified eight cytokines changed their expression with W-PM<sub>2.5</sub> and three cytokines with O-PM<sub>2.5</sub> .
  • Then, in both groups, we can identify the increase in EGF receptor protein levels.
  • [MeSH-major] Interleukin-8 / metabolism. Lung Diseases. Mitogen-Activated Protein Kinases / metabolism. NF-kappa B / metabolism. Particulate Matter / toxicity. Receptor, Epidermal Growth Factor / metabolism

  • MedlinePlus Health Information. consumer health - Lung Diseases.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Wiley Periodicals, Inc.
  • (PMID = 28101945.001).
  • [ISSN] 1522-7278
  • [Journal-full-title] Environmental toxicology
  • [ISO-abbreviation] Environ. Toxicol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Interleukin-8; 0 / NF-kappa B; 0 / Particulate Matter; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.11.24 / Mitogen-Activated Protein Kinases
  • [Keywords] NOTNLM ; Cytokine / epidermal growth factor receptor (EGFR) / erlotinib / mitogen-activated protein kinase (MAPK) / particulate matter2.5(PM2.5)
  •  go-up   go-down


43. Řezníčková E, Tenora L, Pospíšilová P, Galeta J, Jorda R, Berka K, Majer P, Potáček M, Kryštof V: ALK5 kinase inhibitory activity and synthesis of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles. Eur J Med Chem; 2017 Feb 15;127:632-642

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [MeSH-minor] Cell Line, Tumor. Chemistry Techniques, Synthetic. Humans. Structure-Activity Relationship

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28135685.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Protein Kinase Inhibitors; 0 / Pyrazoles; 0 / Receptors, Transforming Growth Factor beta; EC 2.7.1.11 / TGF-beta type I receptor; EC 2.7.11.1 / Protein-Serine-Threonine Kinases
  • [Keywords] NOTNLM ; Inhibitor / Protein kinase / Substituted pyrrolo[1,2-b]pyrazoles / Transforming growth factor beta receptor I
  •  go-up   go-down


44. Karpenko IA, Niko Y, Yakubovskyi VP, Gerasov AO, Bonnet D, Kovtun YP, Klymchenko AS: Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. J Mater Chem C Mater Opt Electron Devices; 2016 Apr 14;4(14):3002-3009

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions.
  • Indeed, in organic solvents, it shows strong red shifts in the absorption and fluorescence spectra upon increase in solvent polarity, typical for push-pull dyes.
  • Its reactive carboxy derivative has been successfully grafted to carbetocin, a ligand of the oxytocin G protein-coupled receptor.
  • It targets specifically the oxytocin receptor at the cell surface, which enables receptor imaging with excellent signal-to-background ratio (>130).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Chem Commun (Camb). 2015 Feb 18;51(14):2960-3 [25594279.001]
  • [Cites] J Lipid Res. 1985 Jul;26(7):781-9 [4031658.001]
  • [Cites] Angew Chem Int Ed Engl. 2013 Feb 25;52(9):2408-10 [23339134.001]
  • [Cites] Chemistry. 2013 Jul 22;19(30):9760-5 [23744761.001]
  • [Cites] Chem Commun (Camb). 2015 Dec 14;51(96):17136-9 [26455447.001]
  • [Cites] Chembiochem. 2014 Feb 10;15(3):359-63 [24449564.001]
  • [Cites] Pharm Res. 2008 Jul;25(7):1487-99 [18172579.001]
  • [Cites] ACS Chem Biol. 2014 Mar 21;9(3):606-12 [24471525.001]
  • [Cites] J Phys Chem B. 2008 Dec 11;112(49):15893-902 [19367903.001]
  • [Cites] Prog Mol Biol Transl Sci. 2013;113:1-34 [23244787.001]
  • [Cites] J Am Chem Soc. 2010 Apr 7;132(13):4907-16 [20225874.001]
  • [Cites] Biophys J. 2009 May 6;96(9):3461-70 [19413953.001]
  • [Cites] Phys Chem Chem Phys. 2012 Feb 21;14(7):2292-300 [22237699.001]
  • [Cites] Photochem Photobiol Sci. 2014 Oct;13(10):1397-401 [25093970.001]
  • [Cites] J Am Chem Soc. 2008 Apr 2;130(13):4246-7 [18331041.001]
  • [Cites] Trends Biotechnol. 2010 Feb;28(2):73-83 [19962774.001]
  • [Cites] Phys Chem Chem Phys. 2012 Oct 5;14(37):12671-86 [22806312.001]
  • [Cites] J Am Chem Soc. 2008 Mar 19;130(11):3238-9 [18302371.001]
  • [Cites] J Phys Chem A. 2007 Sep 20;111(37):8934-41 [17718454.001]
  • [Cites] Org Biomol Chem. 2007 Jun 7;5(11):1669-78 [17520133.001]
  • [Cites] Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2290-310 [24482312.001]
  • [Cites] J Phys Chem Lett. 2012 Apr 19;3(8):1011-6 [26286565.001]
  • [Cites] J Am Chem Soc. 2008 May 28;130(21):6672-3 [18457396.001]
  • [Cites] Science. 2011 Jul 29;333(6042):642-6 [21798953.001]
  • [Cites] J Phys Chem A. 2011 Mar 24;115(11):2160-8 [21361264.001]
  • [Cites] J Am Chem Soc. 2015 Jan 14;137(1):405-12 [25506627.001]
  • [Cites] Chem Rev. 2014 Jan 8;114(1):590-659 [24024656.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(35):6480-4 [19637175.001]
  • [Cites] Prog Mol Biol Transl Sci. 2013;113:35-58 [23244788.001]
  • [Cites] Chem Rev. 2003 Oct;103(10 ):3899-4032 [14531716.001]
  • [Cites] Nat Chem Biol. 2007 Apr;3(4):222-8 [17351628.001]
  • [Cites] Chem Commun (Camb). 2014 May 25;50(40):5282-4 [24266030.001]
  • [Cites] J Biol Eng. 2010 Sep 15;4:11 [20843326.001]
  • [Cites] Biochim Biophys Acta. 2010 Jul;1804(7):1405-12 [20399286.001]
  • [Cites] Curr Opin Chem Biol. 2015 Aug;27:64-74 [26117808.001]
  • [Cites] J Org Chem. 2015 Nov 6;80(21):10794-805 [26468685.001]
  • [Cites] Nat Biotechnol. 2008 Feb;26(2):235-40 [18157118.001]
  • [Cites] Nat Methods. 2014 Jul;11(7):731-3 [24859753.001]
  • [Cites] Biochim Biophys Acta. 2008 Apr;1778(4):1148-53 [18258179.001]
  • (PMID = 28491320.001).
  • [ISSN] 2050-7526
  • [Journal-full-title] Journal of materials chemistry. C, Materials for optical and electronic devices
  • [ISO-abbreviation] J Mater Chem C Mater Opt Electron Devices
  • [Language] eng
  • [Publication-type] Journal Article
  •  go-up   go-down


45. Jouan E, Le Vée M, Denizot C, Parmentier Y, Fardel O: Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells. Pharmaceutics; 2016 Dec 28;9(1)
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP).
  • Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated.
  • HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Pharmacol Exp Ther. 2003 Feb;304(2):801-9 [12538836.001]
  • [Cites] Free Radic Biol Med. 2015 Nov;88(Pt B):93-100 [26117331.001]
  • [Cites] J Hepatol. 2000;32(1 Suppl):3-18 [10728790.001]
  • [Cites] Biochem Biophys Res Commun. 2004 May 7;317(3):708-16 [15081398.001]
  • [Cites] Int J Cancer. 2001 Oct 15;94(2):157-65 [11668492.001]
  • [Cites] Biochem Pharmacol. 2013 Aug 15;86(4):548-60 [23792120.001]
  • [Cites] Fundam Clin Pharmacol. 2011 Dec;25(6):743-52 [21210849.001]
  • [Cites] Carcinogenesis. 1993 Apr;14(4):781-3 [8097138.001]
  • [Cites] Toxicol In Vitro. 2013 Sep;27(6):1979-86 [23850984.001]
  • [Cites] Mol Pharmacol. 2010 Aug;78(2):175-85 [20460431.001]
  • [Cites] Hepatology. 2007 Apr;45(4):1046-55 [17393504.001]
  • [Cites] Handb Exp Pharmacol. 2011;(201):105-67 [21103969.001]
  • [Cites] FASEB J. 2006 Dec;20(14 ):2651-3 [17065227.001]
  • [Cites] J Neurosci Methods. 2009 May 15;179(2):173-8 [19428524.001]
  • [Cites] Cell Biol Toxicol. 2016 Feb;32(1):37-59 [27027780.001]
  • [Cites] Clin Pharmacol Ther. 2013 Jul;94(1):95-112 [23588315.001]
  • [Cites] Curr Drug Metab. 2015;16(9):753-64 [26630906.001]
  • [Cites] Toxicol In Vitro. 2010 Sep;24(6):1775-81 [20619336.001]
  • [Cites] Eur J Pharm Sci. 2006 May;28(1-2):109-17 [16488578.001]
  • [Cites] AAPS J. 2013 Jul;15(3):629-45 [23543602.001]
  • [Cites] Toxicology. 2001 Oct 5;167(1):37-46 [11557128.001]
  • [Cites] Curr Drug Metab. 2005 Aug;6(4):309-28 [16101571.001]
  • [Cites] Pharmacol Rep. 2012;64(4):927-39 [23087145.001]
  • [Cites] PLoS One. 2015 Mar 24;10 (3):e0121232 [25803276.001]
  • [Cites] Drug Metab Dispos. 2005 Oct;33(10):1418-22 [16014767.001]
  • [Cites] J Hazard Mater. 2007 Jul 19;146(1-2):356-61 [17234337.001]
  • [Cites] Compr Physiol. 2013 Oct;3(4):1721-40 [24265243.001]
  • [Cites] Free Radic Biol Med. 2014 Jun;71:133-45 [24632381.001]
  • [Cites] Mol Pharmacol. 2010 Dec;78(6):1079-87 [20829431.001]
  • [Cites] Methods Mol Biol. 2015;1250:287-302 [26272151.001]
  • [Cites] J Pharm Sci. 2016 Feb;105(2):443-59 [26869411.001]
  • [Cites] Methods Mol Biol. 2010;640:1-40 [20645044.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2016 Apr 15;310(8):G618-28 [26867564.001]
  • [Cites] Toxicol Sci. 2015 Oct;147(2):412-24 [26160117.001]
  • [Cites] Methods Mol Biol. 2010;640:115-38 [20645049.001]
  • [Cites] Int J Cancer. 1995 Dec 11;63(6):855-62 [8847145.001]
  • [Cites] Free Radic Biol Med. 2001 Dec 15;31(12):1539-43 [11744327.001]
  • [Cites] Eur J Pharm Sci. 2013 Apr 11;49(1):39-50 [23396053.001]
  • [Cites] Drug Metab Dispos. 2009 Mar;37(3):685-93 [19074973.001]
  • [Cites] Arch Toxicol. 2013 Aug;87(8):1315-530 [23974980.001]
  • [Cites] J Biol Chem. 2002 Jan 25;277(4):2908-15 [11706036.001]
  • [Cites] J Exp Ther Oncol. 2007;6(4):335-48 [18038766.001]
  • [Cites] Drug Metab Dispos. 2016 Apr;44(4):527-33 [26851239.001]
  • [Cites] Cancer Res. 2000 Jan 1;60(1):47-50 [10646850.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2013 May;9(5):589-616 [23452081.001]
  • [Cites] Cancer Res. 1982 Sep;42(9):3858-63 [6286115.001]
  • [Cites] Nat Biotechnol. 2015 Dec;33(12):1264-1271 [26501953.001]
  • [Cites] Eur J Pharm Sci. 2006 Apr;27(5):524-32 [16337112.001]
  • [Cites] Int J Oncol. 1999 Sep;15(3):571-6 [10427142.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2014;54:509-35 [24160696.001]
  • [Cites] Pharmacol Rev. 2013 May 17;65(3):944-66 [23686349.001]
  • [Cites] Biochem Pharmacol. 2000 Dec 15;60(12):1967-75 [11108814.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2008 Apr;4(4):363-79 [18433342.001]
  • [Cites] Toxicol In Vitro. 2015 Aug;29(5):938-46 [25862123.001]
  • [Cites] Drug Metab Rev. 2010 Aug;42(3):482-538 [20233023.001]
  • [Cites] Toxicol Lett. 2015 Feb 3;232(3):580-9 [25542144.001]
  • [Cites] Toxicol In Vitro. 2012 Dec;26(8):1278-85 [22643240.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15655-60 [12432097.001]
  • [Cites] Int J Neuropsychopharmacol. 2010 Aug;13(7):905-15 [19887017.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2009 Dec;5(12):1469-81 [19785515.001]
  • [Cites] Toxicology. 2000 Nov 16;153(1-3):203-19 [11090958.001]
  • [Cites] Eur J Pharmacol. 2015 Jan 5;746:167-73 [25449033.001]
  • [Cites] Toxicol Sci. 2015 May;145(1):157-68 [25690737.001]
  • [Cites] Curr Drug Targets. 2011 May;12(5):671-82 [21039331.001]
  • [Cites] Liver Int. 2016 Sep;36(9):1284-94 [26931636.001]
  • [Cites] Hepatology. 2014 Dec;60(6):1993-2007 [24729004.001]
  • [Cites] J Biol Chem. 2001 May 4;276(18):14581-7 [11297522.001]
  • [Cites] J Biol Chem. 1987 Feb 15;262(5):2166-70 [2434476.001]
  • [Cites] Nat Rev Drug Discov. 2010 Aug;9(8):597-614 [20671764.001]
  • [Cites] Toxicol In Vitro. 2014 Sep;28(6):1165-75 [24907646.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2012 Sep 1;303(5):G657-65 [22744337.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2005;45:689-723 [15822193.001]
  • [Cites] Drug Metab Rev. 2013 May;45(2):196-217 [23368091.001]
  • [Cites] Hepatology. 2002 Mar;35(3):589-96 [11870371.001]
  • [Cites] J Clin Pharmacol. 2007 May;47(5):566-78 [17442683.001]
  • [Cites] Pharmaceutics. 2016 Apr 12;8(2):null [27077878.001]
  • (PMID = 28036031.001).
  • [Journal-full-title] Pharmaceutics
  • [ISO-abbreviation] Pharmaceutics
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; HuH-7 / MRP2 / drug transporters / hepatocytes / hepatoma
  •  go-up   go-down


46. Iwaszkiewicz-Grzes D, Cholewinski G, Kot-Wasik A, Trzonkowski P, Dzierzbicka K: Investigations on the immunosuppressive activity of derivatives of mycophenolic acid in immature dendritic cells. Int Immunopharmacol; 2017 Mar;44:137-142
Hazardous Substances Data Bank. MYCOPHENOLATE MOFETIL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The most interesting activity in this series of studies, that is, the suppression of CD86 receptor expression, decreased cytokine production and suppressed mixed leucocyte reaction, exhibited (mycophenoyl-N-3-propyl)-9-acridone-4-carboxamide ester 5a and (mycophenoyl-N-5-pentyl)-9-acridone-4-carboxamide ester 5b.
  • [MeSH-minor] Acridones / chemistry. Antigens, CD86 / genetics. Antigens, CD86 / metabolism. Cell Differentiation / drug effects. Cell Proliferation / drug effects. Cells, Cultured. Humans. Interleukin-10 / metabolism. Interleukin-2 / metabolism. Lymphocyte Activation / drug effects. Lymphocyte Culture Test, Mixed

  • MedlinePlus Health Information. consumer health - Autoimmune Diseases.
  • MedlinePlus Health Information. consumer health - Organ Transplantation.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28092865.001).
  • [ISSN] 1878-1705
  • [Journal-full-title] International immunopharmacology
  • [ISO-abbreviation] Int. Immunopharmacol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Acridones; 0 / Antigens, CD86; 0 / IL10 protein, human; 0 / Immunosuppressive Agents; 0 / Interleukin-2; 130068-27-8 / Interleukin-10; HU9DX48N0T / Mycophenolic Acid
  • [Keywords] NOTNLM ; Acridines / Acridones / Amino acids / Dendritic cells / Immunosuppressants / Mycophenolic acid
  •  go-up   go-down


47. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D: [Insulin-mimetic property of vanadium compounds]. Postepy Biochem; 2016;62(1):60-65
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : Vanadium is a transition metal which creates a number of inorganic and organic derivatives with various organic substances.
  • They have anti-tumor properties, capable of inhibiting cell proliferation at the concentrations of several micromoles.
  • As they can increase the activity of the insulin-like growth factor I receptor, they stimulate glycogen synthesis, increase the number of GLUT-4 transporters in the cell membrane and impair gluconeogenesis.
  • Thanks to their mitotic properties, low concentrations of vanadium compounds are also able to induce β cell regeneration.
  • However, the range of therapeutic concentrations is very narrow; at concentrations as low a several micromoles vanadium compounds inhibit cell proliferation and cause apoptosis, necrosis and inflammation.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28132446.001).
  • [ISSN] 0032-5422
  • [Journal-full-title] Postepy biochemii
  • [ISO-abbreviation] Postepy Biochem.
  • [Language] pol
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Poland
  • [Keywords] NOTNLM ; diabetes mellitus / insulin / vanadium
  •  go-up   go-down


48. Tokizane K, Konishi H, Makide K, Kawana H, Nakamuta S, Kaibuchi K, Ohwada T, Aoki J, Kiyama H: Phospholipid localization implies microglial morphology and function via Cdc42 in vitro. Glia; 2017 May;65(5):740-755

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We demonstrate that lysophosphatidylserine (LysoPS), a kind of lysophospholipids, rapidly and substantially alters the morphology of primary cultured microglia to an in vivo-like ramified shape in a receptor independent manner.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Wiley Periodicals, Inc.
  • (PMID = 28181299.001).
  • [ISSN] 1098-1136
  • [Journal-full-title] Glia
  • [ISO-abbreviation] Glia
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; NF-kB / lysophospholipid / phosphatidylserine / pro-inflammatory cytokines / ramified microglia
  •  go-up   go-down


49. Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, Leiman PG, Letarov AV: Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol Microbiol; 2017 May 17;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Function of bacteriophage G7C esterase tailspike in host cell adsorption.
  • Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 John Wiley & Sons Ltd.
  • (PMID = 28513100.001).
  • [ISSN] 1365-2958
  • [Journal-full-title] Molecular microbiology
  • [ISO-abbreviation] Mol. Microbiol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; bacteriophage / esterase / phage-host interaction / podovirus / tailspike
  •  go-up   go-down


50. Dai Y, Huo X, Zhang Y, Yang T, Li M, Xu X: Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area. Sci Total Environ; 2017 Aug 15;592:51-59

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Improper dismantling and combustion of electronic waste (e-waste) may release persistent organic pollutants and heavy metals that possess potential risk for human health.
  • The aim of the study was to investigate the effect of Pb exposure on blood morphology and erythrocyte complement receptor 1 (CR1) levels as related to immunologic function in preschool children.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28301822.001).
  • [ISSN] 1879-1026
  • [Journal-full-title] The Science of the total environment
  • [ISO-abbreviation] Sci. Total Environ.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Electronic waste / Erythrocyte complement receptor type 1 / Erythrocyte immunity / Lead / Preschool children
  •  go-up   go-down


51. Morita A, Ushikubo H, Mori A, Arima S, Sakamoto K, Nagamitsu T, Ishii K, Nakahara T: A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Dev Dyn; 2017 Mar;246(3):186-200

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • RESULTS: A dose-dependent delay in retinal vascularization was observed in mice that had been treated with KRN633 (1-10 mg/kg), a VEGF receptor inhibitor, on the day of birth and on the following day.
  • CONCLUSIONS: These findings suggest that a delay in normal vascularization leads to abnormal astrocyte behavior, which results in the formation of abnormal astrocyte and endothelial cell networks in the mouse retina.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2016 Wiley Periodicals, Inc.
  • (PMID = 28033674.001).
  • [ISSN] 1097-0177
  • [Journal-full-title] Developmental dynamics : an official publication of the American Association of Anatomists
  • [ISO-abbreviation] Dev. Dyn.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; astrocytes / endothelial cells / retina / vascular development / vascular endothelial growth factor
  •  go-up   go-down


52. Motoyama K, Nishiyama R, Maeda Y, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H: Synthesis of multi-lactose-appended β-cyclodextrin and its cholesterol-lowering effects in Niemann-Pick type C disease-like HepG2 cells. Beilstein J Org Chem; 2017;13:10-18
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • These results indicate that multi-Lac-β-CD (DSL5.6) diminished intracellular cholesterol levels in NPC-like HepG2 cells via asialoglycoprotein receptor (ASGPR)-mediated endocytosis.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28179943.001).
  • [Journal-full-title] Beilstein journal of organic chemistry
  • [ISO-abbreviation] Beilstein J Org Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; Niemann–Pick type C disease / asialoglycoprotein receptor / cholesterol / cyclodextrin / lactose
  •  go-up   go-down


53. Shevelev AY, Kostiukevich MV, Efremov EE, Vlasik TN, Mironova NA, Zykov KA, Kashirina NM, Kuznetsova IB, Sharf TV, Mamochkina EN, Lipatova LN, Peklo MM, Rutkevich PN, Yanushevskaya EV, Rybalkin IN, Stukalova OV, Malkina TA, Belyaeva MM, Kuznetsova TV, Tkachev GA, Zinchenko LV, Gupalo EM, Agapova OY, Yureneva-Tkhorzhevskaya TV, Rvacheva AV, Sidorova MV, Sadgyan AS, Tereshchenko SN, Golitsyn SP: [Detection of Autoantibodies Against the 1-Adrenergic Receptor in the Sera of Patients via the Competitive cell-Based Enzyme Linked Immunosorbent Assay]. Kardiologiia; 2016 Dec;56(11):61-70

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] [Detection of Autoantibodies Against the 1-Adrenergic Receptor in the Sera of Patients via the Competitive cell-Based Enzyme Linked Immunosorbent Assay].
  • OBJECTIVE: This study aimed to assess the level of anti-1-adrenergic receptor autoantibodies in patients with ventricular arrhythmias with no signs of organic heart disease and with presence of cardiovascular pathology in comparison with a group of healthy volunteers.
  • MATERIAL AND METHODS: The study included 44 patients with ventricular arrhythmias with no signs of organic heart disease ("idiopathic"), 34 patients with diagnosed dilated cardiomyopathy (DCM) of inflammatory origin, 35 patients with coronary heart disease and ventricular arrhythmias, 12patients with coronary heart disease with no ventricular arrhythmias, and 19 healthy volunteers (control group).
  • The level of autoantibodies against the 1-adrenergic receptor was determined by the developed competitive cell-based enzyme-linked immunosorbent assay (ELISA) and by the standard ELISA using peptides corresponding to the second extracellular loop of the 1-adrenergic receptor.
  • RESULTS: Elevated level of autoantibodies detected by a competitive cell-based ELISA was observed in 62% of patients with DCM compared to 21% of healthy volunteers (p=0.0006).
  • In patients with "idiopathic" ventricular arrhythmias, the level of 1-adrenergic receptor autoantibodies was lower than in healthy subjects (p=0.003).
  • No correlation between the data from competitive cell-based ELISA and peptide-based ELISA was found.
  • CONCLUSIONS: This study demonstrated that competitive cell-based ELISA technique can be applied for detection of 1-adrenergic receptor autoantibodies.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28290821.001).
  • [ISSN] 0022-9040
  • [Journal-full-title] Kardiologiia
  • [ISO-abbreviation] Kardiologiia
  • [Language] rus
  • [Publication-type] English Abstract; Journal Article
  • [Publication-country] Russia (Federation)
  • [Keywords] NOTNLM ; 1-adrenergic receptor / autoantibodies / competitive cell-based ELISA / dilated cardiomyopathy / ventricular arrhythmias
  •  go-up   go-down


54. Hirsch I, Janovec V, Stranska R, Bendriss-Vermare N: Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells. Front Immunol; 2017;8:394

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells.
  • Surprisingly, interference of ITAM-associated receptor signaling with TLR pathways has not been reported in conventional dendritic cells.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Sci Signal. 2011 Apr 19;4(169):ra24 [21505186.001]
  • [Cites] J Virol. 2012 Jan;86(2):1090-6 [22090103.001]
  • [Cites] Gastroenterology. 2013 Feb;144(2):414-425.e7 [23089201.001]
  • [Cites] Immunity. 2005 Jan;22(1):31-42 [15664157.001]
  • [Cites] Nat Immunol. 2010 May;11(5):373-84 [20404851.001]
  • [Cites] J Biol Chem. 2002 Oct 4;277(40):36940-7 [12145291.001]
  • [Cites] Nat Immunol. 2010 Aug;11(8):734-42 [20639876.001]
  • [Cites] Sci Signal. 2011 Apr 19;4(169):pe20 [21505184.001]
  • [Cites] Trends Immunol. 2010 Oct;31(10):391-7 [20832362.001]
  • [Cites] Blood. 2012 Nov 29;120(23):4544-51 [23053572.001]
  • [Cites] Nat Rev Immunol. 2015 Aug;15(8):471-85 [26160613.001]
  • [Cites] J Exp Med. 2001 Dec 17;194(12):1823-34 [11748283.001]
  • [Cites] Nat Immunol. 2008 Dec;9(12):1407-14 [18931679.001]
  • [Cites] Nat Rev Immunol. 2008 Oct;8(10 ):816-22 [18787561.001]
  • [Cites] Cancer Res. 2012 Dec 1;72(23):6130-41 [23026134.001]
  • [Cites] Protein Cell. 2013 Jan;4(1):40-52 [23132256.001]
  • [Cites] Nat Immunol. 2004 Feb;5(2):190-8 [14716310.001]
  • [Cites] J Immunol. 2001 Apr 15;166(8):5000-7 [11290780.001]
  • [Cites] Annu Rev Immunol. 2015;33:257-90 [25581309.001]
  • [Cites] J Immunol. 2015 Aug 15;195(4):1723-31 [26123355.001]
  • [Cites] Immunity. 2013 Jun 27;38(6):1176-86 [23770228.001]
  • [Cites] Nature. 2008 Mar 13;452(7184):234-8 [18305481.001]
  • [Cites] Nature. 2005 Mar 10;434(7030):243-9 [15665823.001]
  • [Cites] Mol Immunol. 2010 Apr;47(7-8):1569-78 [20138367.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3396-401 [17360657.001]
  • [Cites] Immunity. 2012 Feb 24;36(2):166-74 [22365663.001]
  • [Cites] Nat Rev Immunol. 2007 Feb;7(2):155-61 [17220916.001]
  • [Cites] J Exp Med. 2006 Jun 12;203(6):1399-405 [16735691.001]
  • [Cites] Nat Rev Immunol. 2009 Jul;9(7):465-79 [19521399.001]
  • [Cites] J Immunol. 2005 Nov 1;175(9):5724-31 [16237063.001]
  • [Cites] J Exp Med. 2014 Sep 22;211(10):1977-91 [25180065.001]
  • [Cites] Nat Rev Immunol. 2014 Feb;14(2):94-108 [24445665.001]
  • [Cites] Cell. 1994 Dec 2;79(5):913-22 [8001128.001]
  • [Cites] J Exp Med. 2011 Sep 26;208(10):1989-2003 [21930769.001]
  • [Cites] J Biol Chem. 2012 Jun 1;287(23):19216-28 [22511786.001]
  • [Cites] PLoS Biol. 2007 Sep 11;5(10):e248 [17850179.001]
  • [Cites] Blood. 2008 Apr 15;111(8):4245-53 [18258799.001]
  • [Cites] J Immunol. 2011 Dec 1;187(11):5693-702 [22021614.001]
  • [Cites] Nat Immunol. 2008 Sep;9(9):1028-36 [18690222.001]
  • [Cites] Blood. 2013 Jan 17;121(3):459-67 [23212525.001]
  • [Cites] J Immunol. 2007 Oct 1;179(7):4598-607 [17878357.001]
  • [Cites] J Clin Invest. 2014 Sep;124(9):3945-59 [25061875.001]
  • [Cites] J Immunol. 2012 Apr 1;188(7):3447-57 [22368279.001]
  • [Cites] Immunity. 2010 Apr 23;32(4):518-30 [20362473.001]
  • [Cites] Science. 2010 Sep 17;329(5998):1530-4 [20847273.001]
  • [Cites] Front Immunol. 2014 Sep 18;5:449 [25278942.001]
  • [Cites] J Immunol. 2009 Dec 15;183(12):7984-93 [19933865.001]
  • [Cites] Cell Mol Immunol. 2012 Mar;9(2):105-12 [22246129.001]
  • [Cites] Blood. 2006 Feb 15;107(4):1459-67 [16239426.001]
  • [Cites] Eur J Immunol. 2008 Jul;38(7):1822-32 [18581320.001]
  • [Cites] EMBO Mol Med. 2014 Sep 12;6(10 ):1312-27 [25216727.001]
  • [Cites] Nat Immunol. 2008 Feb;9(2):186-93 [18084294.001]
  • [Cites] Annu Rev Immunol. 2013;31:743-91 [23330953.001]
  • [Cites] J Biol Chem. 2001 Feb 16;276(7):4957-63 [11067845.001]
  • [Cites] Cell. 2000 Dec 22;103(7):1071-83 [11163183.001]
  • [Cites] J Immunol. 2013 Jan 15;190(2):695-702 [23241879.001]
  • [Cites] Eur J Immunol. 2007 Dec;37(12 ):3564-75 [18022864.001]
  • [Cites] Blood. 2005 Sep 15;106(6):2076-82 [15941912.001]
  • [Cites] Annu Rev Immunol. 2012;30:491-529 [22224766.001]
  • [Cites] J Immunol. 2011 Mar 1;186(5):3104-12 [21282509.001]
  • [Cites] PLoS One. 2016 Jun 03;11(6):e0156063 [27258042.001]
  • [Cites] EMBO Mol Med. 2015 Mar 11;7(4):464-76 [25762615.001]
  • [Cites] J Immunol. 2003 May 1;170(9):4465-74 [12707322.001]
  • [Cites] J Exp Med. 2010 Jun 7;207(6):1261-71 [20479117.001]
  • [Cites] Cancer Res. 2012 Oct 15;72(20):5188-97 [22836755.001]
  • [Cites] Immunity. 1997 Apr;6(4):419-28 [9133421.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E898-904 [22431588.001]
  • [Cites] J Immunol. 2012 Jul 15;189(2):786-92 [22706086.001]
  • [Cites] Immunol Rev. 2008 Dec;226:41-56 [19161415.001]
  • [Cites] J Exp Med. 2009 Jul 6;206(7):1603-14 [19564354.001]
  • [Cites] Cell Immunol. 2010;265(1):15-22 [20673884.001]
  • [Cites] J Leukoc Biol. 2009 Mar;85(3):518-25 [19028959.001]
  • [Cites] J Exp Med. 2009 Aug 31;206(9):1863-71 [19667062.001]
  • [Cites] Cell Host Microbe. 2015 Dec 9;18(6):682-93 [26651944.001]
  • [Cites] Int Immunol. 2008 Jan;20(1):155-64 [18048391.001]
  • [Cites] Blood. 2007 Jun 15;109(12):5371-9 [17332250.001]
  • [Cites] Sci STKE. 2006 Jan 31;2006(320):re1 [16449667.001]
  • [Cites] Nat Rev Immunol. 2013 Sep;13(9):679-92 [23954936.001]
  • [Cites] Nat Immunol. 2008 Sep;9(9):1019-27 [18677317.001]
  • [Cites] Eur J Immunol. 2006 Jul;36(7):1646-53 [16783855.001]
  • [Cites] J Immunol. 2013 Dec 15;191(12):5933-40 [24218450.001]
  • [Cites] J Leukoc Biol. 2016 Nov;100(5):927-941 [27343013.001]
  • [Cites] Cancer Res. 2012 Oct 15;72(20):5240-9 [22850422.001]
  • [Cites] Immunity. 2013 Jul 25;39(1):91-3 [23890067.001]
  • [Cites] Blood. 2006 Mar 15;107(6):2474-6 [16293595.001]
  • [Cites] Int J Cancer. 2013 Aug 1;133(3):771-8 [23389942.001]
  • (PMID = 28439271.001).
  • [Journal-full-title] Frontiers in immunology
  • [ISO-abbreviation] Front Immunol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; B cell receptor-like signaling / conventional dendritic cells / immunoreceptor tyrosine-based activation motif-associated receptor / macrophage / plasmacytoid dendritic cell / regulatory receptors / toll-like receptors
  •  go-up   go-down


55. Starick L, Riano F, Karunakaran MM, Kunzmann V, Li J, Kreiss M, Amslinger S, Scotet E, Olive D, De Libero G, Herrmann T: Butyrophilin 3A (BTN3A, CD277)-specific antibody 20.1 differentially activates Vγ9Vδ2 TCR clonotypes and interferes with phosphoantigen activation. Eur J Immunol; 2017 Apr 06;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • This study provides novel perspectives on the physiological mechanism of Vγ9Vδ2 T-cell activation, and highlights the complex mode of action of BTN3A-specific antibodies as agents in cancer immunotherapy.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • (PMID = 28386905.001).
  • [ISSN] 1521-4141
  • [Journal-full-title] European journal of immunology
  • [ISO-abbreviation] Eur. J. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; Butyrophilin / Human γδ T cells / Phosphoantigen / T-cell activation / T-cell receptor
  •  go-up   go-down


56. Singh G, Singh G, Bhatti R, Gupta V, Mahajan A, Singh P, Singh Ishar MP: Rationally designed benzopyran fused isoxazolidines and derived β&lt;sup&gt;2,3,3&lt;/sup&gt;-amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. Eur J Med Chem; 2017 Feb 15;127:210-222
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Further, molecular docking analysis reveals that compound 2a binds to δ-opioid receptor (DOR) with comparatively better D-score than to μ (MOR) and κ (KOR) receptors.
  • [MeSH-minor] Animals. Cell Line. Chemistry Techniques, Synthetic. Drug Design. Female. Humans. Male. Mice. Pain / drug therapy. Prostaglandin-Endoperoxide Synthases / metabolism. Protein Conformation. Receptors, Opioid / chemistry. Receptors, Opioid / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28063353.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Amino Alcohols; 0 / Analgesics; 0 / Benzopyrans; 0 / Isoxazoles; 0 / Receptors, Opioid; EC 1.14.99.1 / Prostaglandin-Endoperoxide Synthases
  • [Keywords] NOTNLM ; Antinociceptive activity / Benzopyran fused isoxazolidines / Intramolecular 1,3-dipolar cycloaddition / Opioid receptor / Reductive cleavage
  •  go-up   go-down


57. Satoh R, Hagihara K, Matsuura K, Manse Y, Kita A, Kunoh T, Masuko T, Moriyama M, Moriyama H, Tanabe G, Muraoka O, Sugiura R: Identification of ACA-28, a 1'-acetoxychavicol acetate analogue compound, as a novel modulator of ERK MAPK signaling, which preferentially kills human melanoma cells. Genes Cells; 2017 May 09;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The extracellular signal-regulated kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as melanoma.
  • In addition, ACA-28 specifically induced apoptosis in NIH/3T3 cells which were oncogenically transformed with human epidermal growth factor receptor-2 (HER2/ErbB2), but not in the parental cells.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
  • (PMID = 28485554.001).
  • [ISSN] 1365-2443
  • [Journal-full-title] Genes to cells : devoted to molecular & cellular mechanisms
  • [ISO-abbreviation] Genes Cells
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


58. Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, Hindryckx P, De Vos M, Laukens D: Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. Lab Invest; 2017 May;97(5):519-529

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD).
  • Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF<sup>ΔARE/WT</sup> mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction.
  • Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28165466.001).
  • [ISSN] 1530-0307
  • [Journal-full-title] Laboratory investigation; a journal of technical methods and pathology
  • [ISO-abbreviation] Lab. Invest.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


59. Sato Y, Kinoshita M, Takemura S, Tanaka S, Hamano G, Nakamori S, Fujikawa M, Sugawara Y, Yamamoto T, Arimoto A, Yamamura M, Sasaki M, Harada K, Nakanuma Y, Kubo S: The PD-1/PD-L1 axis may be aberrantly activated in occupational cholangiocarcinoma. Pathol Int; 2017 Mar;67(3):163-170
MedlinePlus Health Information. consumer health - Occupational Health.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [MeSH-major] Antigens, CD274 / biosynthesis. Bile Duct Neoplasms / pathology. Cholangiocarcinoma / pathology. Occupational Diseases / pathology. Programmed Cell Death 1 Receptor / biosynthesis

  • MedlinePlus Health Information. consumer health - Bile Duct Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
  • (PMID = 28139862.001).
  • [ISSN] 1440-1827
  • [Journal-full-title] Pathology international
  • [ISO-abbreviation] Pathol. Int.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Australia
  • [Chemical-registry-number] 0 / Antigens, CD274; 0 / CD274 protein, human; 0 / PDCD1 protein, human; 0 / Programmed Cell Death 1 Receptor; 0 / Solvents
  • [Keywords] NOTNLM ; immune escape / multistep carcinogenesis / occupational cholangiocarcinoma / organic solvent exposure
  •  go-up   go-down


60. Hearps AC, Tyssen D, Srbinovski D, Bayigga L, Diaz DJ, Aldunate M, Cone RA, Gugasyan R, Anderson DJ, Tachedjian G: Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol; 2017 Apr 12;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here we demonstrate that lactic acid (LA), a major organic acid metabolite produced by lactobacilli, mediates anti-inflammatory effects on human cervicovaginal epithelial cells.
  • Treatment of human vaginal and cervical epithelial cell lines with LA (pH 3.9) elicited significant increases in the production of the anti-inflammatory cytokine IL-1RA.
  • When added simultaneously or prior to stimulation, LA inhibited the Toll-like receptor agonist-elicited production of inflammatory mediators IL-6, IL-8, TNFα, RANTES, and MIP3α from epithelial cell lines and prevented IL-6 and IL-8 production by seminal plasma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28401934.001).
  • [ISSN] 1935-3456
  • [Journal-full-title] Mucosal immunology
  • [ISO-abbreviation] Mucosal Immunol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


61. Kostarnoy AV, Gancheva PG, Lepenies B, Tukhvatulin AI, Dzharullaeva AS, Polyakov NB, Grumov DA, Egorova DA, Kulibin AY, Bobrov MA, Malolina EA, Zykin PA, Soloviev AI, Riabenko E, Maltseva DV, Sakharov DA, Tonevitsky AG, Verkhovskaya LV, Logunov DY, Naroditsky BS, Gintsburg AL: Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate. Proc Natl Acad Sci U S A; 2017 Mar 28;114(13):E2758-E2765

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate.
  • Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage.
  • In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Lipid Res. 2008 Dec;49(12):2678-89 [18703820.001]
  • [Cites] Br J Cancer. 2014 Feb 4;110(3):753-63 [24322891.001]
  • [Cites] J Biol Chem. 2014 Oct 24;289(43):30052-62 [25202022.001]
  • [Cites] Cold Spring Harb Perspect Biol. 2012 Mar 01;4(3):null [22296764.001]
  • [Cites] Nature. 2012 Apr 25;484(7395):465-72 [22538607.001]
  • [Cites] Nat Rev Immunol. 2010 Dec;10(12):826-37 [21088683.001]
  • [Cites] Cancer Res. 1988 Sep 15;48(18):5289-95 [3409253.001]
  • [Cites] J Immunol. 2008 May 1;180(9):5826-32 [18424701.001]
  • [Cites] Exp Dermatol. 2012 Jan;21(1):25-31 [22151387.001]
  • [Cites] J Immunol. 2010 Mar 15;184(6):2756-60 [20164423.001]
  • [Cites] J Biol Chem. 2015 Oct 16;290(42):25322-32 [26296894.001]
  • [Cites] Nat Commun. 2014 Sep 19;5:4982 [25236782.001]
  • [Cites] J Neurotrauma. 2015 Feb 15;32(4):228-36 [25111533.001]
  • [Cites] Immunol Rev. 2000 Feb;173:89-97 [10719670.001]
  • [Cites] Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14292-7 [20660725.001]
  • [Cites] J Lipid Res. 2003 Jul;44(7):1268-78 [12730293.001]
  • [Cites] Science. 2002 Apr 12;296(5566):301-5 [11951032.001]
  • [Cites] Eur J Appl Physiol. 2012 Mar;112(3):963-72 [21717121.001]
  • [Cites] J Exp Med. 2010 Dec 20;207(13):2921-30 [21115688.001]
  • [Cites] Immunol Cell Biol. 2016 Feb;94(2):164-8 [26215791.001]
  • [Cites] Front Immunol. 2015 Aug 18;6:422 [26347745.001]
  • [Cites] Nat Immunol. 2008 Oct;9(10):1179-88 [18776906.001]
  • [Cites] Clin Rev Allergy Immunol. 2016 Jun;50(3):377-89 [27025861.001]
  • [Cites] Immunity. 2013 May 23;38(5):1050-62 [23602766.001]
  • [Cites] Allergy. 2011 Sep;66(9):1152-63 [21599706.001]
  • [Cites] Nature. 2016 Jan 21;529(7586):307-15 [26791721.001]
  • [Cites] Nat Rev Immunol. 2016 Jul;16(7):433-48 [27291962.001]
  • [Cites] Am J Pathol. 2012 Jul;181(1):8-18 [22640807.001]
  • [Cites] Talanta. 2013 Nov 15;116:115-21 [24148381.001]
  • [Cites] J Lipid Res. 1983 Feb;24(2):131-40 [6833890.001]
  • [Cites] Nature. 2016 Apr 14;532(7598):245-9 [27049944.001]
  • [Cites] Annu Rev Immunol. 1994;12:991-1045 [8011301.001]
  • [Cites] J Clin Invest. 1996 Sep 1;98(5):1158-64 [8787679.001]
  • [Cites] Stroke. 2015 Aug;46(8):2277-86 [26138128.001]
  • [Cites] J Invest Dermatol. 2007 Jun;127(6):1430-5 [17273160.001]
  • [Cites] J Neurochem. 1980 Jul;35(1):266-9 [7452256.001]
  • [Cites] Anal Biochem. 1997 Jun 15;249(1):67-78 [9193710.001]
  • [Cites] J Immunol. 2016 Apr 1;196 (7):3148-58 [26921309.001]
  • [Cites] Nat Commun. 2014 May 07;5:3755 [24806599.001]
  • [Cites] J Immunol. 2015 Sep 1;195(5):2417-28 [26202982.001]
  • [Cites] Front Immunol. 2014 Jun 23;5:288 [25002863.001]
  • [Cites] Nature. 2010 Apr 29;464(7293):1357-61 [20428172.001]
  • [Cites] Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13 [2700931.001]
  • [Cites] J Cell Physiol. 1987 Dec;133(3):573-8 [3480290.001]
  • [Cites] Nat Rev Immunol. 2015 Feb;15(2):104-16 [25614320.001]
  • [Cites] Clin Dev Immunol. 2013;2013:261037 [24023564.001]
  • [Cites] J Exp Med. 1992 Dec 1;176(6):1693-702 [1460426.001]
  • [Cites] Curr Opin Immunol. 2014 Feb;26:147-56 [24556412.001]
  • [Cites] J Leukoc Biol. 2007 Jan;81(1):1-5 [17032697.001]
  • (PMID = 28292894.001).
  • [ISSN] 1091-6490
  • [Journal-full-title] Proceedings of the National Academy of Sciences of the United States of America
  • [ISO-abbreviation] Proc. Natl. Acad. Sci. U.S.A.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Mincle / allergy / cholesterol sulfate / innate immunity / sterile inflammation
  •  go-up   go-down


62. Liu B, Li Y, Ji H, Lu H, Li H, Shi Y: Glutamine attenuates obstructive cholestasis in rats via farnesoid X receptor-mediated regulation of Bsep and Mrp2. Can J Physiol Pharmacol; 2017 Feb;95(2):215-223
Hazardous Substances Data Bank. Glutamine .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Glutamine attenuates obstructive cholestasis in rats via farnesoid X receptor-mediated regulation of Bsep and Mrp2.
  • To investigate the protective effect of glutamine (Gln) against obstructive cholestasis in association with farnesoid X receptor (FXR) activation, an obstructive cholestasis model was established in male Sprague-Dawley rats by bile duct ligation (BDL).
  • [MeSH-minor] Animals. Cholesterol 7-alpha-Hydroxylase / antagonists & inhibitors. Hepatocytes / metabolism. Liver Function Tests. Male. Organic Anion Transporters, Sodium-Dependent / antagonists & inhibitors. Primary Cell Culture. Protective Agents / adverse effects. Protective Agents / pharmacology. RNA, Small Interfering / pharmacology. Rats. Symporters / antagonists & inhibitors

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28051334.001).
  • [ISSN] 1205-7541
  • [Journal-full-title] Canadian journal of physiology and pharmacology
  • [ISO-abbreviation] Can. J. Physiol. Pharmacol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Canada
  • [Chemical-registry-number] 0 / Abcb11 protein, rat; 0 / Multidrug Resistance-Associated Proteins; 0 / Organic Anion Transporters, Sodium-Dependent; 0 / Protective Agents; 0 / RNA, Small Interfering; 0 / Receptors, Cytoplasmic and Nuclear; 0 / Symporters; 0 / farnesoid X-activated receptor; 0 / nuclear receptor subfamily 0, group B, member 2; 0RH81L854J / Glutamine; 145420-23-1 / sodium-bile acid cotransporter; 4AF605U6JN / multidrug resistance-associated protein 2; EC 1.14.14.23 / Cholesterol 7-alpha-Hydroxylase
  • [Keywords] NOTNLM ; Bsep / FXR / Mrp2 / acide biliaire / bile acid / cholestase obstructive / glutamine / obstructive cholestasis
  •  go-up   go-down


63. Hirota Y, Nakagawa K, Mimatsu S, Sawada N, Sakaki T, Kubodera N, Kamao M, Tsugawa N, Suhara Y, Okano T: Nongenomic effects of 1α,25-dihydroxyvitamin D&lt;sub&gt;3&lt;/sub&gt; on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice. Biochem Biophys Res Commun; 2017 Jan 29;483(1):359-365

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : The active form of vitamin D, 1α,25-dihydroxyvitamin D<sub>3</sub> (1α,25D<sub>3</sub>), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
  • (PMID = 28025137.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Bone remodeling / CYP27B1 / Genomic action / Knockout mice / VDR / Vitamin D
  •  go-up   go-down


64. Zhang L, Dai F, Cui L, Zhou B, Guo Y: Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta; 2017 Apr;1864(4):613-624
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The importance of macroautophagy (hereafter referred to as autophagy) in vascular endothelial cell (VEC) biology and dysfunction is increasingly recognized, but the molecular mechanisms of autophagy in VECs in the presence of serum are still poorly understood.
  • Using a combination of immunofluorescence and co-immunoprecipitation (co-IP) assays, we demonstrated that pterostilbene or up-regulation of the active form of Rab13 promoted the interaction between Rab13 and growth factor receptor-bound protein 2 (Grb2).

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28087344.001).
  • [ISSN] 0006-3002
  • [Journal-full-title] Biochimica et biophysica acta
  • [ISO-abbreviation] Biochim. Biophys. Acta
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; AMP-activated protein kinase / Growth factor receptor-bound protein 2 / Macroautophagy / Pterostilbene / Small GTPase Rab13 / Vascular endothelial cell
  •  go-up   go-down


65. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X: Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J Pineal Res; 2017 May;62(4)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Several functions of melatonin are mediated by its membrane receptors, but others are receptor-independent.
  • In this study, it was identified that melatonin and its sulfation metabolites were the substrates of oligopeptide transporter (PEPT) 1/2 and organic anion transporter (OAT) 3, respectively.
  • For the first time, PEPT1/2 were identified to localize in the mitochondrial membrane of human cancer cell lines of PC3 and U118.
  • Thus, PEPT1/2 can potentially be used as a cancer cell-targeted melatonin delivery system to improve the therapeutic effects of melatonin in cancer treatment.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
  • (PMID = 28099762.001).
  • [ISSN] 1600-079X
  • [Journal-full-title] Journal of pineal research
  • [ISO-abbreviation] J. Pineal Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; PEPT1/2 / apoptosis / cancer / melatonin / mitochondria / transporters
  •  go-up   go-down


66. Schuster M, Schnell L, Feigl P, Birkhofer C, Mohr K, Roeder M, Carle S, Langer S, Tippel F, Buchner J, Fischer G, Hausch F, Frick M, Schwan C, Aktories K, Schiene-Fischer C, Barth H: The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Sci Rep; 2017 Apr 04;7(1):613
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • After receptor-mediated uptake of the toxin, DTA translocates from acidic endosomes into the cytosol, which might be assisted by host cell factors.
  • In conclusion, these host cell factors facilitate toxin uptake into human cells, which might lead to development of novel therapeutic strategies against diphtheria.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Med Chem. 2013 Sep 26;56(18):7302-11 [23964991.001]
  • [Cites] J Biol Chem. 1992 Jun 15;267(17):12284-90 [1376320.001]
  • [Cites] J Cell Biol. 2003 Mar 31;160(7):1139-50 [12668662.001]
  • [Cites] J Biol Chem. 2003 Aug 22;278(34):32266-74 [12805360.001]
  • [Cites] Nature. 1970 Aug 15;227(5259):680-5 [5432063.001]
  • [Cites] Nature. 1992 May 21;357(6375):216-22 [1589020.001]
  • [Cites] Mol Microbiol. 1997 Feb;23(3):445-57 [9044279.001]
  • [Cites] J Mol Biol. 2001 May 11;308(4):795-806 [11350175.001]
  • [Cites] PLoS One. 2013;8(2):e57508 [23469007.001]
  • [Cites] J Biol Chem. 1990 Dec 15;265(35):21940-5 [2147689.001]
  • [Cites] Science. 1969 Jun 6;164(3884):1179-81 [4305968.001]
  • [Cites] J Mol Biol. 2015 Mar 27;427(6 Pt A):1224-38 [25058685.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2011 Mar;383(3):237-45 [21120455.001]
  • [Cites] Infect Immun. 2007 Jul;75(7):3344-53 [17438028.001]
  • [Cites] Structure. 2001 May 9;9(5):431-8 [11377203.001]
  • [Cites] Science. 1984 Nov 2;226(4674):544-7 [6238408.001]
  • [Cites] Nat Chem Biol. 2015 Jan;11(1):33-7 [25436518.001]
  • [Cites] Mol Microbiol. 1991 Mar;5(3):595-606 [1646374.001]
  • [Cites] Biol Chem. 2014 Jul;395(7-8):721-35 [24713575.001]
  • [Cites] J Biol Chem. 1995 Jan 20;270(3):1015-9 [7836353.001]
  • [Cites] Endocr Rev. 1997 Jun;18(3):306-60 [9183567.001]
  • [Cites] Biophys Chem. 2003;100(1-3):351-66 [12646377.001]
  • [Cites] Mol Cell Biol. 2013 Apr;33(7):1357-67 [23358420.001]
  • [Cites] Chembiochem. 2013 Jan 2;14(1):63-5 [23225707.001]
  • [Cites] J Biol Chem. 2008 Jun 27;283(26):17757-65 [18400751.001]
  • [Cites] J Biol Chem. 1987 Jul 25;262(21):10339-45 [3112141.001]
  • [Cites] Cell Microbiol. 2009 May;11(5):780-95 [19159389.001]
  • [Cites] Eur J Epidemiol. 1995 Feb;11(1):107-17 [7489768.001]
  • [Cites] EMBO J. 1992 Dec;11(13):4835-42 [1281450.001]
  • [Cites] Cell. 1991 Aug 23;66(4):807-15 [1715244.001]
  • [Cites] Infect Immun. 2004 May;72 (5):3066-8 [15102823.001]
  • [Cites] Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8437-42 [8710889.001]
  • [Cites] Toxicon. 2016 Jun 15;116:23-8 [25911959.001]
  • [Cites] Sci Rep. 2016 Feb 03;6:20301 [26839186.001]
  • [Cites] J Biol Chem. 1981 Sep 10;256(17):9068-76 [7263699.001]
  • [Cites] Curr Top Med Chem. 2003;3(12):1315-47 [12871165.001]
  • [Cites] J Biol Chem. 1971 Mar 10;246(5):1504-10 [5545093.001]
  • [Cites] FEBS J. 2014 May;281(9):2115-22 [24628974.001]
  • [Cites] J Biol Chem. 2010 Oct 8;285(41):31261-7 [20667832.001]
  • [Cites] J Med Chem. 2009 Mar 26;52(6):1510-3 [19256508.001]
  • [Cites] Cell. 1978 Sep;15(1):245-50 [699044.001]
  • [Cites] Cell Microbiol. 2014 Apr;16(4):490-503 [24138221.001]
  • [Cites] J Biol Chem. 1971 Mar 10;246(5):1492-5 [5545091.001]
  • [Cites] Biochemistry. 1993 Jan 12;32(1):83-90 [8418864.001]
  • [Cites] J Biol Chem. 1994 Feb 11;269(6):4648-52 [7508447.001]
  • [Cites] Infect Immun. 2011 Oct;79(10):3913-21 [21768281.001]
  • [Cites] J Biol Chem. 1988 Sep 5;263(25):12352-9 [2457582.001]
  • [Cites] J Biol Chem. 1971 Mar 10;246(5):1496-503 [5545092.001]
  • [Cites] J Biol Chem. 1996 Feb 9;271(6):2961-5 [8621687.001]
  • [Cites] Adv Protein Chem. 1993;44:25-66 [8317297.001]
  • [Cites] J Biol Chem. 2007 Aug 17;282(33):24239-45 [17584737.001]
  • [Cites] Annu Rev Biophys Biomol Struct. 1993;22:123-42 [7688608.001]
  • [Cites] Toxins (Basel). 2011 Mar;3(3):294-308 [22069710.001]
  • [Cites] EMBO J. 1994 May 15;13(10):2322-30 [8194524.001]
  • [Cites] J Biol Chem. 1993 Dec 15;268(35):26461-5 [8253774.001]
  • [Cites] Cell. 1992 Jun 12;69(6):1051-61 [1606612.001]
  • [Cites] EMBO J. 1988 Nov;7(11):3353-9 [2463157.001]
  • [Cites] J Cell Biol. 1980 Dec;87(3 Pt 1):828-32 [7462324.001]
  • [Cites] Cell Microbiol. 2012 Aug;14 (8):1193-205 [22420783.001]
  • [Cites] J Biol Chem. 1991 Feb 5;266(4):2652-9 [1990012.001]
  • [Cites] Nature. 1989 Feb 2;337(6206):476-8 [2492638.001]
  • [Cites] J Med Chem. 2015 Oct 8;58(19):7796-806 [26419422.001]
  • [Cites] J Biol Chem. 1994 Oct 7;269(40):24983-8 [7929182.001]
  • [Cites] Annu Rev Biochem. 1977;46:69-94 [20040.001]
  • [Cites] Cell Microbiol. 2011 Mar;13(3):359-73 [20946244.001]
  • [Cites] J Biol Chem. 1993 Feb 15;268(5):3514-9 [8429026.001]
  • [Cites] J Biol Chem. 1994 Mar 18;269(11):8402-7 [8132565.001]
  • [Cites] J Biol Chem. 1993 Jan 25;268(3):1567-74 [8420931.001]
  • [Cites] Nat Struct Biol. 2002 Jun;9(6):419-24 [12021775.001]
  • (PMID = 28377614.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


67. Sekula-Neuner S, de Freitas M, Tröster LM, Jochum T, Levkin PA, Hirtz M, Fuchs H: Phospholipid arrays on porous polymer coatings generated by micro-contact spotting. Beilstein J Nanotechnol; 2017;8:715-722
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphoethanolamine-<i>N</i>-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphoethanolamine-<i>N</i>-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Small. 2007 Jan;3(1):71-5 [17294472.001]
  • [Cites] Transl Androl Urol. 2013 Sep;2(3):157-177 [25237629.001]
  • [Cites] Biomaterials. 2013 Feb;34(7):1757-63 [23228425.001]
  • [Cites] Science. 1991 Feb 15;251(4995):767-73 [1990438.001]
  • [Cites] Cancer Cell. 2011 Jul 12;20(1):119-31 [21741601.001]
  • [Cites] Angew Chem Int Ed Engl. 2011 Aug 29;50(36):8424-7 [21751312.001]
  • [Cites] Nat Neurosci. 2014 Sep;17(9):1180-9 [25108912.001]
  • [Cites] Lab Chip. 2012 Dec 21;12(24):5218-24 [23114283.001]
  • [Cites] Biochim Biophys Acta. 2012 Jun;1822(6):1070-8 [22366762.001]
  • [Cites] Lancet Oncol. 2009 Oct;10(10):981-91 [19796750.001]
  • [Cites] Cancer Res. 2001 Apr 1;61(7):2892-8 [11306464.001]
  • [Cites] Nucl Recept Signal. 2005;3:e001 [16604169.001]
  • [Cites] Small. 2008 Oct;4(10):1785-93 [18814174.001]
  • [Cites] Small. 2012 Feb 20;8(4):585-91 [22278752.001]
  • [Cites] Biophys J. 2003 Nov;85(5):3066-73 [14581207.001]
  • [Cites] Langmuir. 2013 May 28;29(21):6404-8 [23627772.001]
  • [Cites] Nat Protoc. 2016 Jun;11(6):1021-38 [27149326.001]
  • [Cites] J Neuroimmunol. 2011 Sep 15;238(1-2):87-95 [21872346.001]
  • [Cites] Crit Rev Biotechnol. 2006 Oct-Dec;26(4):237-59 [17095434.001]
  • [Cites] Beilstein J Nanotechnol. 2013 Jun 19;4:377-84 [23844343.001]
  • [Cites] Chem Rev. 2008 Jan;108(1):109-39 [18095717.001]
  • [Cites] Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8169-73 [1896465.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(42):7744-51 [19757463.001]
  • [Cites] Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11878-83 [21730179.001]
  • [Cites] Biomed Microdevices. 2004 Jun;6(2):117-23 [15320633.001]
  • [Cites] Nanoscale. 2015 Oct 14;7(38):15618-34 [26267408.001]
  • [Cites] Nat Med. 2006 Jan;12(1):138-43 [16341241.001]
  • (PMID = 28487815.001).
  • [Journal-full-title] Beilstein journal of nanotechnology
  • [ISO-abbreviation] Beilstein J Nanotechnol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; microcontact cantilever spotting / phospholipids / polymeric porous support / polymethacrylate
  •  go-up   go-down


68. Anna S, Agnieszka M, Zenon L, Beata P, Ewa G: Methods for 20S Immunoproteasome and 20S Constitutive Proteasome Determination Based on SPRI Biosensors. Cell Mol Bioeng; 2017;10(2):174-185

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Specific 20Si entrapment on the biosensor surface from an analyzed solution was achieved by means of an immobilized specific 20Si receptor.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Analyst. 2013 Oct 21;138(20):6052-62 [23954940.001]
  • [Cites] J Neurochem. 2008 Jul;106(1):158-69 [18346202.001]
  • [Cites] Anal Biochem. 2012 Apr 15;423(2):218-23 [22369897.001]
  • [Cites] Prog Mol Biol Transl Sci. 2012;109:75-112 [22727420.001]
  • [Cites] Int Urol Nephrol. 2016 Jun;48(6):907-15 [26920131.001]
  • [Cites] Immune Netw. 2009 Dec;9(6):285-8 [20157616.001]
  • [Cites] Protein Pept Lett. 2010 Sep;17(9):1148-54 [20394580.001]
  • [Cites] Mikrochim Acta. 2011 Oct;175(1-2):177-184 [21966027.001]
  • [Cites] Anal Bioanal Chem. 2009 Feb;393(4):1157-63 [18958451.001]
  • [Cites] Pept Res. 1995 Jul-Aug;8(4):236-7 [8527877.001]
  • [Cites] Chem Pharm Bull (Tokyo). 1988 Apr;36(4):1289-97 [2970896.001]
  • [Cites] Cancer Biomark. 2016;16(3):343-50 [26835590.001]
  • [Cites] Trends Biochem Sci. 2010 Nov;35(11):634-42 [20541423.001]
  • [Cites] Curr Pharm Des. 2013;19(22):4140-51 [23181576.001]
  • [Cites] Curr Pharm Des. 2013;19(4):702-18 [23016859.001]
  • [Cites] Biochem Pharmacol. 2014 May 1;89(1):43-51 [24552657.001]
  • [Cites] Oncol Lett. 2014 Sep;8(3):1323-1327 [25120717.001]
  • [Cites] Biochim Biophys Acta. 2008 Dec;1782(12):817-23 [18602990.001]
  • [Cites] Brain. 2013 May;136(Pt 5):1415-31 [23604491.001]
  • [Cites] Biochem Biophys Res Commun. 2010 Jun 25;397(2):301-6 [20510670.001]
  • [Cites] Clin Biochem Rev. 2012 Nov;33(4):161-73 [23267248.001]
  • [Cites] Anal Bioanal Chem. 2004 Jun;379(3):328-31 [15127177.001]
  • [Cites] Blood. 2010 May 20;115(20):4051-60 [20110419.001]
  • [Cites] Haematologica. 2013 Dec;98(12):1896-904 [24056819.001]
  • [Cites] Eur J Obstet Gynecol Reprod Biol. 2013 Jul;169(1):80-3 [23466190.001]
  • [Cites] Science. 1994 Aug 26;265(5176):1234-7 [8066463.001]
  • [Cites] Drug Resist Updat. 2015 Jan;18:18-35 [25670156.001]
  • [Cites] Cell. 2012 Feb 17;148(4):727-38 [22341445.001]
  • (PMID = 28356996.001).
  • [ISSN] 1865-5025
  • [Journal-full-title] Cellular and molecular bioengineering
  • [ISO-abbreviation] Cell Mol Bioeng
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; 20S proteasome / ONX 0914 / PSI / Proteasome inhibitors / Sensor / Surface plasmone resonance imaging
  •  go-up   go-down


69. Thompson CA, Wojta K, Pulakanti K, Rao S, Dawson P, Battle MA: GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine. Cell Mol Gastroenterol Hepatol; 2017 May;3(3):422-446
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine.
  • BACKGROUND & AIMS: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum.
  • Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes.
  • When enterocyte function is disrupted by disease or injury, intestinal failure can occur.
  • One approach to alleviate intestinal failure would be to restore lost enterocyte functions.
  • The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated.
  • We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes.
  • The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium.
  • METHODS: To test this hypothesis, we generated a novel <i>Gata4</i> conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent.
  • RESULTS: We found that GATA4-expressing ileum lost ileal identity.
  • The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum.
  • Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity.
  • Furthermore, our study implicates GATA4 as a transcriptional repressor of <i>fibroblast growth factor 15 (Fgf15)</i>, which encodes an enterokine that has been implicated in an increasing number of human diseases.
  • CONCLUSIONS: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity.
  • Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Genet. 1999 Jan;21(1):70-1 [9916792.001]
  • [Cites] J Biol Chem. 1999 Oct 15;274(42):29749-54 [10514450.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [16199517.001]
  • [Cites] Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424-8 [8378314.001]
  • [Cites] Dev Biol. 2008 Oct 1;322(1):179-89 [18692040.001]
  • [Cites] Mol Cell Biol. 1998 May;18(5):2901-11 [9566909.001]
  • [Cites] Cytokine Growth Factor Rev. 2015 Dec;26(6):625-35 [26250749.001]
  • [Cites] Dev Biol. 2012 Nov 1;371(1):1-12 [22766025.001]
  • [Cites] Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3789-94 [9108056.001]
  • [Cites] Genes Dev. 1991 Sep;5(9):1513-23 [1653172.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2006 Mar;290(3):G476-85 [16269519.001]
  • [Cites] Physiol Rev. 2007 Oct;87(4):1343-75 [17928586.001]
  • [Cites] Biochim Biophys Acta. 2014 Nov;1839(11):1273-82 [24878542.001]
  • [Cites] J Biol Chem. 2009 Jan 2;284(1):134-40 [18981186.001]
  • [Cites] Dev Biol. 2014 Aug 15;392(2):283-94 [24929016.001]
  • [Cites] Acta Pharm Sin B. 2015 Mar;5(2):129-34 [26579438.001]
  • [Cites] Pflugers Arch. 2004 Feb;447(5):566-70 [12851823.001]
  • [Cites] Curr Protoc Mol Biol. 2010 Oct;Chapter 21:Unit 21.20 [20890903.001]
  • [Cites] J Lipid Res. 2007 Dec;48(12 ):2664-72 [17720959.001]
  • [Cites] BMC Res Notes. 2014 Dec 11;7:902 [25495347.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12573-8 [15310850.001]
  • [Cites] J Biol Chem. 2005 Feb 25;280(8):6960-8 [15563450.001]
  • [Cites] Hepatology. 2009 Jan;49(1):297-305 [19085950.001]
  • [Cites] Mol Cell Biol. 2008 Sep;28(17):5420-31 [18591257.001]
  • [Cites] BMC Dev Biol. 2001;1:4 [11299042.001]
  • [Cites] Cell Mol Gastroenterol Hepatol. 2016 Aug 29;2(6):725-732 [28174746.001]
  • [Cites] Trends Endocrinol Metab. 2015 Jan;26(1):22-9 [25476453.001]
  • [Cites] Dev Dyn. 2011 Mar;240(3):501-20 [21246663.001]
  • [Cites] Nat Biotechnol. 2008 Nov;26(11):1293-300 [18978777.001]
  • [Cites] Semin Fetal Neonatal Med. 2011 Jun;16(3):157-63 [21398196.001]
  • [Cites] Genome Biol. 2008;9(9):R137 [18798982.001]
  • [Cites] Am J Clin Nutr. 1998 Nov;68(5):999-1005 [9808214.001]
  • [Cites] Genes Dev. 2012 Jan 1;26(1):37-42 [22215809.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):4965-6 [18362334.001]
  • [Cites] Gene Expr Patterns. 2006 Apr;6(4):426-32 [16377257.001]
  • [Cites] Mol Cell Biochem. 2002 Oct;239(1-2):149-55 [12479580.001]
  • [Cites] J Lipid Res. 2007 Dec;48(12):2693-700 [17823457.001]
  • [Cites] Development. 1997 Jan;124(2):279-87 [9053305.001]
  • [Cites] Nature. 1993 Sep 2;365(6441):87-9 [8361547.001]
  • [Cites] J Biol Chem. 2002 Sep 6;277(36):33275-83 [12065599.001]
  • [Cites] Transgenic Res. 2005 Aug;14(4):477-82 [16201414.001]
  • [Cites] PLoS One. 2013 Dec 18;8(12):e83723 [24367609.001]
  • [Cites] Mol Cell Biol. 2006 Dec;26(23):9060-70 [16940177.001]
  • [Cites] J Pediatr Surg. 2004 May;39(5):690-5 [15137001.001]
  • [Cites] Development. 2000 Nov;127(22):4915-23 [11044405.001]
  • [Cites] Trends Biochem Sci. 2006 Oct;31(10):572-80 [16908160.001]
  • [Cites] Cell Metab. 2005 Oct;2(4):217-25 [16213224.001]
  • [Cites] Dig Dis. 2015 ;33(3):327-31 [26045265.001]
  • [Cites] Stem Cells. 2014 May;32(5):1083-91 [24496776.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2004 Oct;287(4):G899-909 [15178553.001]
  • [Cites] Cell Mol Gastroenterol Hepatol. 2016 Mar;2(2):189-209 [27066525.001]
  • [Cites] Gastroenterology. 2008 Nov;135(5):1676-1686.e1 [18812176.001]
  • (PMID = 28462382.001).
  • [Journal-full-title] Cellular and molecular gastroenterology and hepatology
  • [ISO-abbreviation] Cell Mol Gastroenterol Hepatol
  • [Language] eng
  • [Grant] United States / NIDDK NIH HHS / DK / R01 DK047987; United States / NIDDK NIH HHS / DK / R01 DK087873; United States / NIDDK NIH HHS / DK / R29 DK047987; United States / NIDDK NIH HHS / DK / R56 DK087873
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Cyp7a1, cytochrome P450 family 7 subfamily A member 1 / E, embryonic day / EMSA, electrophoretic mobility shift assay / Enterohepatic Signaling / FXR / FXR, farnesoid X receptor / Fabp6, fatty acid binding protein 6 / Fgf, fibroblast growth factor / Fgf15 / Jejunal Identity / OSTα/β, organic solute transporter α/β / PCR, polymerase chain reaction / SBS, short-bowel syndrome / Slc, solute carrier / TSS, transcription start site / Transcriptional Regulation / bio-ChIP-seq, biotin-mediated chromatin immunoprecipitation with high-throughput sequencing / bp, base pair / cDNA, complementary DNA / cKI, conditional knock-in / cKO, conditional knockout / dATP, deoxyadenosine triphosphate / lnl, loxP-flanked PGK-Neo-3xSV40 polyadenylation sequence / mRNA, messenger RNA / pA, polyadenylation / qRT, quantitative reverse-transcription / xiFABP, Xenopus I-FABP
  •  go-up   go-down


70. Darbre PD: Endocrine Disruptors and Obesity. Curr Obes Rep; 2017 Mar;6(1):18-27

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Endocrine Disruptors and Obesity.
  • PURPOSE OF REVIEW: The purpose of this review was to summarise current evidence that some environmental chemicals may be able to interfere in the endocrine regulation of energy metabolism and adipose tissue structure.
  • RECENT FINDINGS: Recent findings demonstrate that such endocrine-disrupting chemicals, termed "obesogens", can promote adipogenesis and cause weight gain.
  • This includes compounds to which the human population is exposed in daily life through their use in pesticides/herbicides, industrial and household products, plastics, detergents, flame retardants and as ingredients in personal care products.
  • Animal models and epidemiological studies have shown that an especially sensitive time for exposure is in utero or the neonatal period.
  • In summarising the actions of obesogens, it is noteworthy that as their structures are mainly lipophilic, their ability to increase fat deposition has the added consequence of increasing the capacity for their own retention.
  • This has the potential for a vicious spiral not only of increasing obesity but also increasing the retention of other lipophilic pollutant chemicals with an even broader range of adverse actions.
  • This might offer an explanation as to why obesity is an underlying risk factor for so many diseases including cancer.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Mol Cell Endocrinol. 2009 May 25;304(1-2):84-9 [19433252.001]
  • [Cites] Environ Health Perspect. 2008 Jun;116(6):761-8 [18560532.001]
  • [Cites] Toxicol Sci. 2013 Jan;131(1):56-70 [22956630.001]
  • [Cites] Environ Health Perspect. 2013 Mar;121(3):359-66 [23322813.001]
  • [Cites] Reprod Toxicol. 2013 Dec;42:132-55 [23994667.001]
  • [Cites] Environ Health. 2015 Jun 20;14:54 [26092037.001]
  • [Cites] Endocr Rev. 2012 Jun;33(3):378-455 [22419778.001]
  • [Cites] PLoS One. 2013;8(1):e55387 [23359474.001]
  • [Cites] Endocrinology. 2006 Jun;147(6 Suppl):S11-7 [16690809.001]
  • [Cites] Environ Health Perspect. 2004 Mar;112(3):331-8 [14998749.001]
  • [Cites] Obesity (Silver Spring). 2006 Jul;14(7):1107-12 [16899790.001]
  • [Cites] Environ Sci. 2006;13(2):77-87 [16788559.001]
  • [Cites] Best Pract Res Clin Endocrinol Metab. 2006 Mar;20(1):45-61 [16522519.001]
  • [Cites] Mol Cell. 1999 Oct;4(4):611-7 [10549292.001]
  • [Cites] Toxicology. 2016 May 16;357-358:11-20 [27241191.001]
  • [Cites] J Toxicol Environ Health B Crit Rev. 2009 Feb;12(2):157-74 [19235623.001]
  • [Cites] Cell. 1994 Dec 30;79(7):1147-56 [8001151.001]
  • [Cites] Environ Health Perspect. 2008 Jan;116(1):39-44 [18197297.001]
  • [Cites] Am J Clin Nutr. 2014 Jan;99(1):5-13 [24153349.001]
  • [Cites] Toxicol Sci. 2003 Aug;74(2):297-308 [12805656.001]
  • [Cites] Environ Health Perspect. 2007 Jun;115(6):876-82 [17589594.001]
  • [Cites] Toxicol Sci. 2003 Oct;75(2):314-20 [12883076.001]
  • [Cites] Circulation. 2002 Dec 17;106(25):3143-421 [12485966.001]
  • [Cites] Mol Endocrinol. 2006 Sep;20(9):2141-55 [16613991.001]
  • [Cites] Curr Med Res Opin. 2011 Jul;27(7):1431-8 [21599553.001]
  • [Cites] Biochem Biophys Res Commun. 2001 Nov 23;289(1):198-204 [11708799.001]
  • [Cites] Environ Int. 2016 Jul-Aug;92-93:680-94 [27066981.001]
  • [Cites] Horm Mol Biol Clin Investig. 2014 Jul;19(1):13-24 [25390013.001]
  • [Cites] Chemosphere. 2014 Oct;112:42-8 [25048886.001]
  • [Cites] Diabetes. 2004 Feb;53 Suppl 1:S43-50 [14749265.001]
  • [Cites] Int J Environ Res Public Health. 2016 Jul 28;13(8):null [27483295.001]
  • [Cites] Int J Epidemiol. 2002 Apr;31(2):413-9 [11980805.001]
  • [Cites] J Nutr. 1999 Feb;129(2):399-405 [10024618.001]
  • [Cites] J Steroid Biochem Mol Biol. 2011 Oct;127(1-2):4-8 [21251979.001]
  • [Cites] Cell. 2011 Mar 4;144(5):646-74 [21376230.001]
  • [Cites] Mol Cell Endocrinol. 2012 May 6;354(1-2):74-84 [22249005.001]
  • [Cites] Toxicol In Vitro. 2016 Apr;32:297-309 [26820058.001]
  • [Cites] Toxicol Lett. 2002 Jan 25;126(2):121-30 [11751016.001]
  • [Cites] Mol Endocrinol. 2010 Mar;24(3):526-39 [20160124.001]
  • [Cites] Birth Defects Res A Clin Mol Teratol. 2005 Jul;73(7):478-80 [15959888.001]
  • [Cites] J Biochem Mol Toxicol. 2013 Feb;27(2):124-36 [23139171.001]
  • [Cites] J Endocrinol. 2008 Jun;197(3):503-15 [18492816.001]
  • [Cites] Endocrinology. 1994 Jul;135(1):175-82 [8013351.001]
  • [Cites] Birth Defects Res C Embryo Today. 2011 Mar;93(1):34-50 [21425440.001]
  • [Cites] J Lipid Res. 2002 May;43(5):676-84 [11971937.001]
  • [Cites] Environ Health Perspect. 2008 Mar;116(3):322-8 [18335098.001]
  • [Cites] Am J Obstet Gynecol. 1948 Nov;56(5):821-34 [18888213.001]
  • [Cites] Environ Health Perspect. 2015 Dec;123(12):1287-93 [26018136.001]
  • [Cites] Environ Health. 2008 Jun 03;7:27 [18522739.001]
  • [Cites] Int J Obes (Lond). 2008 Feb;32(2):201-10 [18278059.001]
  • [Cites] Mol Pharmacol. 2005 Mar;67(3):766-74 [15611480.001]
  • [Cites] BMC Med. 2013 Oct 23;11:228 [24228800.001]
  • [Cites] Environ Health Perspect. 2009 Jan;117(1):122-6 [19165398.001]
  • [Cites] Toxicol Lett. 1995 Jan;75(1-3):1-17 [7863515.001]
  • [Cites] J Clin Endocrinol Metab. 2004 Jun;89(6):2548-56 [15181022.001]
  • [Cites] Obes Rev. 2011 Aug;12(8):622-36 [21457182.001]
  • [Cites] J Bone Miner Res. 2006 May;21(5):780-9 [16734394.001]
  • [Cites] J Steroid Biochem Mol Biol. 2011 Oct;127(1-2):27-34 [21605673.001]
  • [Cites] Prog Cardiovasc Dis. 2014 Jan-Feb;56(4):369-81 [24438728.001]
  • [Cites] Endocrinology. 2006 Jun;147(6 Suppl):S50-5 [16690801.001]
  • [Cites] J Pediatr. 2010 Jul;157(1):26-31.e2 [20303506.001]
  • [Cites] Mt Sinai J Med. 2011 Jan-Feb;78(1):22-48 [21259261.001]
  • [Cites] Endocrinology. 1993 Jun;132(6):2279-86 [8504731.001]
  • [Cites] Int J Androl. 2008 Apr;31(2):201-8 [18315718.001]
  • [Cites] Toxicol Appl Pharmacol. 1999 Dec 1;161(2):209-18 [10581215.001]
  • [Cites] Nature. 2008 Jun 5;453(7196):783-7 [18454136.001]
  • [Cites] Mol Cell Endocrinol. 2012 Apr 4;351(2):269-78 [22233684.001]
  • [Cites] Metabolism. 1991 Dec;40(12):1323-6 [1961129.001]
  • [Cites] Endocrinology. 2006 Dec;147(12):5740-51 [16959845.001]
  • [Cites] Arch Toxicol. 2017 Jan;91(1):83-96 [27438348.001]
  • [Cites] Environ Res. 2016 Apr;146:379-87 [26821262.001]
  • [Cites] Toxicol Lett. 2005 Dec 15;159(3):226-34 [15993011.001]
  • [Cites] Mol Nutr Food Res. 2007 Jul;51(7):912-7 [17604389.001]
  • [Cites] PLoS One. 2016 Mar 04;11(3):e0150762 [26942597.001]
  • [Cites] Environ Health Perspect. 2012 Dec;120(12 ):1720-6 [23086663.001]
  • [Cites] J Appl Toxicol. 2014 Sep;34(9):925-38 [25047802.001]
  • [Cites] J Steroid Biochem Mol Biol. 2011 Oct;127(1-2):9-15 [21397693.001]
  • [Cites] Environ Sci Pollut Res Int. 2016 Nov;23 (21):21957-21968 [27535158.001]
  • [Cites] J Nutr. 2006 Feb;136(2):409-14 [16424120.001]
  • [Cites] Ann N Y Acad Sci. 2014 Apr;1311:57-76 [24725147.001]
  • [Cites] Am J Obstet Gynecol. 2016 May;214(5):559-65 [26829510.001]
  • [Cites] PLoS One. 2013 Oct 14;8(10):e77481 [24155963.001]
  • [Cites] Maturitas. 2012 Jun;72(2):108-12 [22464649.001]
  • [Cites] Arch Toxicol. 2001 Jun;75(4):200-8 [11482517.001]
  • [Cites] Stem Cells. 2008 Sep;26(9):2287-99 [18566331.001]
  • [Cites] Crit Rev Toxicol. 2014 Aug;44(7):600-17 [25068490.001]
  • [Cites] J Biol Chem. 2007 Jun 29;282(26):19152-66 [17468099.001]
  • (PMID = 28205155.001).
  • [ISSN] 2162-4968
  • [Journal-full-title] Current obesity reports
  • [ISO-abbreviation] Curr Obes Rep
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Adipogenesis / Bisphenol A / Diethylstilbestrol / Endocrine disruptor / Endocrine-disrupting chemicals / Obesity / Obesogen / Paraben / Peroxisome proliferator-activated receptor / Persistent organic pollutants / Tributyltin
  •  go-up   go-down


71. Haruta M, Sussman MR: Ligand Receptor-Mediated Regulation of Growth in Plants. Curr Top Dev Biol; 2017;123:331-363
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ligand Receptor-Mediated Regulation of Growth in Plants.
  • In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses.
  • For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size.
  • The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy.
  • Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes.
  • With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
  • [MeSH-major] Plant Development. Plants / metabolism. Receptors, Cell Surface / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28236971.001).
  • [ISSN] 1557-8933
  • [Journal-full-title] Current topics in developmental biology
  • [ISO-abbreviation] Curr. Top. Dev. Biol.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Ligands; 0 / Plant Growth Regulators; 0 / Receptors, Cell Surface
  • [Keywords] NOTNLM ; Arabidopsis (major topic) / Cell expansion (major topic) / Peptide hormone (major topic) / Phosphorylation (major topic) / Protein kinase (major topic) / Receptor-like kinase (major topic)
  •  go-up   go-down


72. Elkamhawy A, Park JE, Hassan AH, Ra H, Pae AN, Lee J, Park BG, Moon B, Park HM, Roh EJ: Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: A new modulator for amyloid beta-induced mitochondrial dysfunction. Eur J Med Chem; 2017 Mar 10;128:56-69
Hazardous Substances Data Bank. CYCLOSPORIN A .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Among them, 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea (5x) effectively maintained mitochondrial function and cell viabilities on ATP assay, MTT assay, and ROS assay.
  • Using CDocker algorithm, a molecular docking model presented a plausible binding mode for 5x with cyclophilin D (CypD) receptor as a major component of mPTP.
  • [MeSH-minor] Alzheimer Disease. Animals. Cell Survival / drug effects. Cells, Cultured. Cyclosporine / pharmacology. Drug Discovery. Immunosuppressive Agents / pharmacology. Membrane Potential, Mitochondrial / drug effects. Mice. Mitochondrial Membrane Transport Proteins / metabolism. Molecular Docking Simulation. Protein Conformation / drug effects

  • Hazardous Substances Data Bank. UREA .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016. Published by Elsevier Masson SAS.
  • (PMID = 28152427.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea; 0 / Amyloid beta-Peptides; 0 / Immunosuppressive Agents; 0 / Mitochondrial Membrane Transport Proteins; 0 / Piperazines; 83HN0GTJ6D / Cyclosporine; 8W8T17847W / Urea
  • [Keywords] NOTNLM ; Alzheimer's disease (AD) / Mitochondrial permeability transition pore (mPTP) / Molecular docking / Pyridyl-urea / β-amyloid peptide (Aβ)
  •  go-up   go-down


73. He L, Brasino M, Mao C, Cho S, Park W, Goodwin AP, Cha JN: DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small; 2017 May 08;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy.
  • DNA-mediated assembly of core-satellite structures composed of Zr(IV)-based porphyrinic metal-organic framework (MOF) and NaYF<sub>4</sub> ,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported.
  • The MOF-UCNP core-satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • (PMID = 28481463.001).
  • [ISSN] 1613-6829
  • [Journal-full-title] Small (Weinheim an der Bergstrasse, Germany)
  • [ISO-abbreviation] Small
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; DNA self-assembly / core-satellite / metal-organic frameworks / photodynamic therapy / upconverting nanoparticles
  •  go-up   go-down


74. Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath K, Díaz Díaz D, Banerjee R: Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. J Am Chem Soc; 2017 Mar 29;139(12):4513-4520

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification.
  • Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability.
  • In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA).
  • Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28256830.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


75. Matalonga J, Glaria E, Bresque M, Escande C, Carbó JM, Kiefer K, Vicente R, León TE, Beceiro S, Pascual-García M, Serret J, Sanjurjo L, Morón-Ros S, Riera A, Paytubi S, Juarez A, Sotillo F, Lindbom L, Caelles C, Sarrias MR, Sancho J, Castrillo A, Chini EN, Valledor AF: The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism. Cell Rep; 2017 Jan 31;18(5):1241-1255

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism.
  • Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38.
  • Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
  • (PMID = 28147278.001).
  • [ISSN] 2211-1247
  • [Journal-full-title] Cell reports
  • [ISO-abbreviation] Cell Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; CD38 / LXR / NAD / bacterial infection / cytoskeleton / macrophage / nuclear receptor
  •  go-up   go-down


76. Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF: Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal; 2017 Mar 21;10(471)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation.
  • Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs).
  • The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family.
  • We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and β-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration.
  • In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling.
  • We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4.
  • The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition.
  • Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017, American Association for the Advancement of Science.
  • (PMID = 28325822.001).
  • [ISSN] 1937-9145
  • [Journal-full-title] Science signaling
  • [ISO-abbreviation] Sci Signal
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


77. Ferroni C, Pepe A, Kim YS, Lee S, Guerrini A, Parenti MD, Tesei A, Zamagni A, Cortesi M, Zaffaroni N, De Cesare M, Beretta GL, Trepel JB, Malhotra SV, Varchi G: 1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. J Med Chem; 2017 Apr 13;60(7):3082-3093
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Prostate cancer (PC) is the fifth leading cause of cancer death in men, and the androgen receptor (AR) represents the primary target for PC treatment, even though the disease frequently progresses toward androgen-independent forms.
  • In fact, compound 14d displayed promising in vitro antitumor activity toward three different prostate cancer cell lines and was able to induce 60% tumor growth inhibition of the CW22Rv1 in vivo xenograft model.
  • [MeSH-minor] Animals. Cell Line, Tumor. Drug Discovery. Gene Expression Regulation, Neoplastic / drug effects. Humans. Male. Mice, Nude. Models, Molecular. Prostate-Specific Antigen / genetics. RNA, Messenger / genetics

  • Genetic Alliance. consumer health - Prostate cancer.
  • MedlinePlus Health Information. consumer health - Prostate Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28272894.001).
  • [ISSN] 1520-4804
  • [Journal-full-title] Journal of medicinal chemistry
  • [ISO-abbreviation] J. Med. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Nonsteroidal Anti-Androgens; 0 / RNA, Messenger; 0 / Triazoles; EC 3.4.21.77 / Prostate-Specific Antigen
  •  go-up   go-down


78. Rosa M, Gonzalez-Nunez V, Barreto-Valer K, Marcelo F, Sánchez-Sánchez J, Calle LP, Arévalo JC, Rodríguez RE, Jiménez-Barbero J, Arsequell G, Valencia G: Role of the sugar moiety on the opioid receptor binding and conformation of a series of enkephalin neoglycopeptides. Bioorg Med Chem; 2017 Apr 01;25(7):2260-2265
ZFIN. ZFIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Role of the sugar moiety on the opioid receptor binding and conformation of a series of enkephalin neoglycopeptides.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Ltd. All rights reserved.
  • (PMID = 28284867.001).
  • [ISSN] 1464-3391
  • [Journal-full-title] Bioorganic & medicinal chemistry
  • [ISO-abbreviation] Bioorg. Med. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Enkephalin-related / Glycosylation / Neoglycopeptides / Neuropeptide / Opioid receptors / Pharmacology
  •  go-up   go-down


79. Giambartolomei GH, Arriola Benitez PC, Delpino MV: &lt;i&gt;Brucella&lt;/i&gt; and Osteoarticular Cell Activation: Partners in Crime. Front Microbiol; 2017;8:256

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] <i>Brucella</i> and Osteoarticular Cell Activation: Partners in Crime.
  • The molecular mechanisms implicated in bone damage have been recently elucidated. <i>B. abortus</i> induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved.
  • These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. <i>B. abortus</i> also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage.
  • The analysis of <i>B. abortus</i>-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Semin Arthritis Rheum. 1982 Nov;12 (2):245-55 [6101216.001]
  • [Cites] Bone. 2006 Sep;39(3):658-65 [16690366.001]
  • [Cites] J Immunol. 2004 Oct 1;173(7):4635-42 [15383598.001]
  • [Cites] N Engl J Med. 2005 Jun 2;352(22):2325-36 [15930423.001]
  • [Cites] Calcif Tissue Int. 2012 Sep;91(3):215-24 [22865265.001]
  • [Cites] Bone. 2010 Sep;47(3):472-9 [20601290.001]
  • [Cites] Arthritis Res Ther. 2006;8(1):201 [16356195.001]
  • [Cites] Clin Dev Immunol. 2013;2013:720504 [23935650.001]
  • [Cites] J Clin Invest. 2005 Feb;115(2):282-90 [15668736.001]
  • [Cites] Arthritis Rheum. 2001 May;44(5):1003-12 [11352231.001]
  • [Cites] Am J Pathol. 2012 Sep;181(3):887-96 [22901753.001]
  • [Cites] Cell Microbiol. 2005 Oct;7(10):1459-73 [16153245.001]
  • [Cites] Immunology. 1993 Nov;80(3):458-64 [8288319.001]
  • [Cites] Nat Rev Rheumatol. 2009 Dec;5(12):667-76 [19884898.001]
  • [Cites] Am J Pathol. 2006 Sep;169(3):987-98 [16936272.001]
  • [Cites] Infect Immun. 2011 Jan;79(1):192-202 [20956574.001]
  • [Cites] J Bone Miner Res. 1993 Feb;8(2):147-55 [8442433.001]
  • [Cites] J Exp Med. 2000 Jan 17;191(2):275-86 [10637272.001]
  • [Cites] Adv Exp Med Biol. 2010;658:61-8 [19950016.001]
  • [Cites] Nucl Med Commun. 2005 Jul;26(7):639-47 [15942485.001]
  • [Cites] J Biol Chem. 2000 Feb 18;275(7):4858-64 [10671521.001]
  • [Cites] J Rheumatol. 2003 Jun;30(6):1291-7 [12784405.001]
  • [Cites] J Immunol. 2013 Jan 1;190(1):401-10 [23225890.001]
  • [Cites] J Biochem. 2016 Jan;159(1):1-8 [26538571.001]
  • [Cites] J Exp Med. 2006 Nov 27;203(12):2673-82 [17088434.001]
  • [Cites] J Infect Dis. 2016 Jul 1;214(1):151-60 [26951819.001]
  • [Cites] Clin Rheumatol. 2002 Jun;21(3):191-3 [12111621.001]
  • [Cites] J Endocrinol Invest. 2009;32(4 Suppl):6-9 [19724159.001]
  • [Cites] Biochem Biophys Res Commun. 2009 Nov 20;389(3):550-5 [19748486.001]
  • [Cites] Clin Infect Dis. 2008 Feb 1;46(3):426-33 [18181740.001]
  • [Cites] Baillieres Clin Rheumatol. 1995 Feb;9(1):161-77 [7728879.001]
  • [Cites] Front Biosci. 2006 Jan 01;11:529-43 [16146751.001]
  • [Cites] Immunity. 2004 Jun;20(6):707-18 [15189736.001]
  • [Cites] Microbes Infect. 2009 May-Jun;11(6-7):689-97 [19376263.001]
  • [Cites] Infection. 2008 Dec;36(6):578-9 [19020802.001]
  • [Cites] Infect Immun. 1995 Apr;63(4):1387-90 [7890399.001]
  • [Cites] Lancet Infect Dis. 2006 Feb;6(2):91-9 [16439329.001]
  • [Cites] Int J Infect Dis. 2010 Jun;14(6):e469-78 [19910232.001]
  • [Cites] Biomed Res Int. 2016;2016:9089610 [26977415.001]
  • [Cites] Nat Med. 2006 Jun;12(6):657-64 [16715089.001]
  • [Cites] Scand J Infect Dis. 2004;36(1):65-7 [15000565.001]
  • [Cites] Infect Immun. 1995 Feb;63(2):720-3 [7822049.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3597-602 [9520411.001]
  • [Cites] J Periodontal Res. 2006 Oct;41(5):411-7 [16953818.001]
  • [Cites] Arthritis Res Ther. 2009;11(1):R21 [19220900.001]
  • [Cites] Infect Immun. 2005 Jan;73(1):126-34 [15618147.001]
  • [Cites] Arch Biochem Biophys. 2008 May 15;473(2):188-92 [18424255.001]
  • [Cites] J Hepatol. 2010 Jul;53(1):145-54 [20452697.001]
  • [Cites] Ann Saudi Med. 1999 Sep-Oct;19(5):403-5 [17277503.001]
  • [Cites] J Biol Chem. 2016 Jun 17;291(25):13028-39 [27129247.001]
  • [Cites] J Clin Invest. 1994 Dec;94(6):2397-406 [7989596.001]
  • [Cites] Med Mol Morphol. 2015 Jun;48(2):61-8 [25791218.001]
  • [Cites] Microbes Infect. 2001 Jan;3(1):43-8 [11226853.001]
  • [Cites] Inflamm Res. 2004 Nov;53(11):596-600 [15693607.001]
  • [Cites] J Clin Invest. 1993 Jan;91(1):257-63 [8423223.001]
  • [Cites] J Cell Sci. 2009 Jan 15;122(Pt 2):171-7 [19118209.001]
  • [Cites] Genes Immun. 2008 Oct;9(7):591-601 [18650834.001]
  • [Cites] Nat Rev Mol Cell Biol. 2001 Nov;2(11):793-805 [11715046.001]
  • [Cites] J Infect Dis. 2011 Apr 15;203(8):1136-46 [21451002.001]
  • [Cites] Am J Pathol. 2010 Mar;176(3):1323-38 [20093491.001]
  • [Cites] J Exp Med. 1993 Nov 1;178(5):1733-44 [8228819.001]
  • [Cites] Infect Immun. 2011 Sep;79(9):3619-32 [21730088.001]
  • [Cites] Nature. 1999 Nov 18;402(6759):304-9 [10580503.001]
  • [Cites] Infect Immun. 2012 Jul;80(7):2333-45 [22547546.001]
  • [Cites] J Bone Miner Res. 2001 Dec;16(12):2222-31 [11760835.001]
  • [Cites] Immunol Rev. 2010 Jan;233(1):233-55 [20193003.001]
  • [Cites] Springer Semin Immunopathol. 2005 Mar;26(4):433-52 [15633016.001]
  • [Cites] J Infect Dis. 2012 Jul 1;206(1):91-8 [22561364.001]
  • [Cites] Arthritis Res Ther. 2010;12(1):R29 [20167120.001]
  • [Cites] J Med Microbiol. 2010 Dec;59(Pt 12):1514-8 [20724508.001]
  • [Cites] J Immunol. 1987 Feb 1;138(3):775-9 [3805716.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13960-5 [11717453.001]
  • [Cites] Nat Rev Immunol. 2007 Apr;7(4):292-304 [17380158.001]
  • [Cites] Biochem Biophys Res Commun. 1981 Oct 30;102(4):1358-65 [6947798.001]
  • [Cites] J Bone Miner Res. 2002 Nov;17(11):2068-79 [12412815.001]
  • [Cites] Curr Opin Immunol. 2012 Jun;24(3):297-302 [22341735.001]
  • [Cites] Int J Infect Dis. 2002 Sep;6(3):182-6 [12718832.001]
  • [Cites] Br J Rheumatol. 1997 Mar;36(3):377-81 [9133973.001]
  • [Cites] Injury. 2016 Nov;47(11):2399-2406 [27809990.001]
  • [Cites] Dis Model Mech. 2013 May;6(3):811-8 [23519029.001]
  • [Cites] Infect Immun. 2009 Mar;77(3):984-95 [19103778.001]
  • [Cites] Infect Immun. 2013 Jun;81(6):1940-51 [23509146.001]
  • [Cites] Am J Pathol. 1999 Jan;154(1):203-10 [9916934.001]
  • [Cites] J Leukoc Biol. 2012 Aug;92(2):375-87 [22636321.001]
  • [Cites] Curr Opin Pharmacol. 2016 Jun;28:24-30 [26927500.001]
  • [Cites] Clin Immunol. 2005 Jan;114(1):17-26 [15596405.001]
  • [Cites] J Clin Invest. 2000 Nov;106(10):1229-37 [11086024.001]
  • [Cites] J Leukoc Biol. 2012 Feb;91(2):285-98 [22075930.001]
  • [Cites] Microbes Infect. 2016 Sep;18(9):529-35 [27109230.001]
  • [Cites] Infect Immun. 1996 Jul;64(7):2371-80 [8698454.001]
  • [Cites] Cell Death Differ. 2005 Nov;12 Suppl 2:1473-7 [16247493.001]
  • [Cites] J Bone Miner Res. 2011 Feb;26(2):229-38 [21254230.001]
  • [Cites] Intern Med. 2011;50(5):421-8 [21372451.001]
  • (PMID = 28265268.001).
  • [Journal-full-title] Frontiers in microbiology
  • [ISO-abbreviation] Front Microbiol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; B and T cells and Brucella / osteoarticular brucellosis / osteoblast / osteoclastogenesis / synoviocyte
  •  go-up   go-down


80. Hamark C, Berntsson RP, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G: Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J Am Chem Soc; 2017 01 11;139(1):218-230

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion.
  • The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound.
  • We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27958736.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


81. Zha GF, Qin HL, Youssif BGM, Amjad MW, Raja MAG, Abdelazeem AH, Bukhari SNA: Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur J Med Chem; 2017 Apr 14;135:34-48
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In comparison with traditional therapy, multi-targeted drugs directly aim cell subpopulations which are involved in progression of tumor.
  • The growth of 5 various cancer cell types was strongly inhibited by ligustrazine-containing oximes as revealed by biological evaluation.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28431353.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Keywords] NOTNLM ; BRAF / Cancer cell lines / Epidermal growth factor receptor (EGFR) / Focal adhesion kinase (FAK) / Tubulin polymerization
  •  go-up   go-down


82. Abdellatif K, Bakr R, Mehany A: Synthesis, EGFR inhibition and anti-cancer activity of new 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives. Anticancer Agents Med Chem; 2017 Feb 12;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A new series of hybrid pyrazolo[3,4-d]pyrimidine scaffold with a heteroaryl moiety as pyrazole, oxadiazole, triazole or phthalimide moiety (14a-f, 16, 17, 19, 20) was synthesized and biologically evaluated for the cytotoxicity against human liver cancer cell line (HEPG-2), human breast cancer cell line (MCF-7) and human colon cancer cell line (HCT-116).
  • While the pyrazolo hybrid compounds (14a-f) showed good activity against HEPG-2, MCF-7 and HCT-116 cell lines (IC50 = 3.65 - 39.98, 1.45 - 54.19 and 2.00 - 50.6 µM respectively) in comparison with doxorubicin (IC50 = 5.66, 2.60 and 8.48 µM respectively), the triazolo derivatives (17, 19) showed considerable potency (IC50 = 22.20 - 54.61, 14.98 - 88.78, and 10.79 - 53.40 µM respectively), the oxadiazolo hybrid compound (16, IC50 = 149.91, 115.89 and 110.07 µM respectively) and phthalimido hybrid compound (20, IC50 = 96.02, 131.19 and 120.36 µM respectively) showed low potency.
  • The pyrazolo derivative (14d, IC50 = 3.65, 1.45 and 2.00 µM) was the most potent among all compounds against HEPG-2, MCF-7 and HCT-116 cell lines respectively.
  • Also, the hybrid pyrazolo[3,4-d]pyrimidine derivatives were evaluated for their inhibitory activity to epidermal growth factor receptor tyrosine kinase (EGFR-TK) and they showed a good inhibitory activity (IC50 = 8.27 - 19.03 µM).
  • With the exception of the pyrazolo derivative (14c, IC50 = 18.82 µM), the inhibitory activity against EGFR-TK was consistent with the in vitro cytotoxic activity against HEPG-2, MCF-7 and HCT-116 cell lines.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28270084.001).
  • [ISSN] 1875-5992
  • [Journal-full-title] Anti-cancer agents in medicinal chemistry
  • [ISO-abbreviation] Anticancer Agents Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; 4-d]pyrimidine / Anti-cancer activity; EGFR inhibition; pyrazolo[3
  •  go-up   go-down


83. Mendes FB, Bergamin LS, Dos Santos Stuepp C, Braganhol E, Terroso T, Pohlmann AR, Guterres SS, Battastini AM: Alpha-bisabolol Promotes Glioma Cell Death by Modulating the Adenosinergic System. Anticancer Res; 2017 04;37(4):1819-1823
Genetic Alliance. consumer health - Glioma.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Alpha-bisabolol Promotes Glioma Cell Death by Modulating the Adenosinergic System.
  • Alpha-bisabolol is an essential oil reported as a potent cell death agent.
  • Pre-treatment with an A<sub>3</sub> antagonist reverted the effect of α-bisabolol with an increase of mRNA expression of this receptor.
  • CONCLUSION: Our data indicated the participation of ecto-5'-nucleotidase/CD73 and A<sub>3</sub> receptor in the anti-proliferative effect of α-bisabolol on glioma cells.
  • [MeSH-major] 5'-Nucleotidase / metabolism. Cell Survival / drug effects. Glioma / pathology. Receptor, Adenosine A3 / chemistry. Sesquiterpenes / pharmacology
  • [MeSH-minor] Animals. Blotting, Western. Cell Proliferation / drug effects. Humans. RNA, Messenger / genetics. Rats. Real-Time Polymerase Chain Reaction. Reverse Transcriptase Polymerase Chain Reaction. Tumor Cells, Cultured

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
  • (PMID = 28373446.001).
  • [ISSN] 1791-7530
  • [Journal-full-title] Anticancer research
  • [ISO-abbreviation] Anticancer Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  • [Chemical-registry-number] 0 / RNA, Messenger; 0 / Receptor, Adenosine A3; 0 / Sesquiterpenes; 24WE03BX2T / bisabolol; EC 3.1.3.5 / 5'-Nucleotidase
  • [Keywords] NOTNLM ; Glioma (major topic) / adenosine (major topic) / ecto-5’-NT/CD73 (major topic) / α-bisabolol (major topic)
  •  go-up   go-down


84. Kruglov E, Ananthanarayanan M, Sousa P, Weerachayaphorn J, Guerra MT, Nathanson MH: Type 2 inositol trisphosphate receptor gene expression in hepatocytes is regulated by cyclic AMP. Biochem Biophys Res Commun; 2017 May 06;486(3):659-664

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Type 2 inositol trisphosphate receptor gene expression in hepatocytes is regulated by cyclic AMP.
  • The type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) is the principal intracellular Ca<sup>2+</sup> release channel in hepatocytes, and so is important for bile secretion and other functions.
  • Adenylyl cyclase (AC) 6 and 9 were the principal AC isoforms detected in rat hepatocytes, and silencing either one decreased organic anion secretion, which depends on IP3R2.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • [Cites] Cell Metab. 2012 May 2;15(5):739-51 [22503562.001]
  • [Cites] J Biol Chem. 1995 May 12;270(19):11678-83 [7744807.001]
  • [Cites] J Cell Biol. 2008 Oct 20;183(2):297-311 [18936250.001]
  • [Cites] Nature. 2012 Apr 08;485(7396):128-32 [22495310.001]
  • [Cites] Gastroenterology. 2002 Apr;122(4):1088-100 [11910359.001]
  • [Cites] Hepatology. 2010 Jul;52(1):327-37 [20578149.001]
  • [Cites] Gastroenterology. 2007 Jul;133(1):256-67 [17631147.001]
  • [Cites] J Biol Chem. 2012 Nov 16;287(47):39419-28 [23019322.001]
  • [Cites] Cell Signal. 2011 Jan;23(1):71-9 [20727967.001]
  • [Cites] Hepatology. 2010 Aug;52(2):602-11 [20683958.001]
  • [Cites] Adv Biol Regul. 2015 Jan;57:217-27 [25497594.001]
  • [Cites] Nat Rev Mol Cell Biol. 2003 Jul;4(7):517-29 [12838335.001]
  • [Cites] Hepatology. 2011 Nov;54(5):1790-9 [21748767.001]
  • [Cites] Cell Physiol Biochem. 2014;33(1):222-36 [24496246.001]
  • [Cites] Cell Metab. 2011 Jul 6;14(1):9-19 [21723500.001]
  • [Cites] Am J Physiol Endocrinol Metab. 2014 Dec 1;307(11):E1057-64 [25315698.001]
  • [Cites] J Clin Invest. 2014 Nov;124(11):4773-80 [25329695.001]
  • [Cites] Hepatology. 2011 Jul;54(1):296-306 [21503946.001]
  • [Cites] J Cell Biol. 2012 Nov 26;199(5):783-98 [23166348.001]
  • [Cites] J Biol Chem. 2014 Feb 28;289(9):6188-98 [24415751.001]
  • [Cites] Biochim Biophys Acta. 2015 Sep;1853(9):1992-2005 [25499268.001]
  • [Cites] J Biol Chem. 2009 Sep 11;284(37):25116-25 [19608738.001]
  • [Cites] Nat Med. 2014 Dec;20(12):1427-35 [25419710.001]
  • (PMID = 28327356.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Grant] United States / NIDDK NIH HHS / DK / P01 DK057751; United States / NIDDK NIH HHS / DK / P30 DK034989; United States / NIDDK NIH HHS / DK / R01 DK045710; United States / NIDDK NIH HHS / DK / R56 DK099470
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Bile secretion / Calcium signaling / Cyclic AMP / Hepatocytes / Type 2 inositol 1,4,5-trisphosphate receptor
  •  go-up   go-down


85. Wang T, Tang H: The physical characteristics of human proteins in different biological functions. PLoS One; 2017;12(5):e0176234

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression.
  • Immune and peripheral cell proteins tend to be mRNA stable/protein unstable.
  • The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids.
  • The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity.
  • Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Rev Genet. 2002 Nov;3(11):838-49 [12415314.001]
  • [Cites] Clin Genet. 2000 Apr;57(4):253-66 [10845565.001]
  • [Cites] Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6 [21045057.001]
  • [Cites] Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [10592173.001]
  • [Cites] Mol Biosyst. 2009 Dec;5(12):1512-26 [20023718.001]
  • [Cites] Mol Syst Biol. 2011 May 24;7:498 [21613985.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80 [19351897.001]
  • [Cites] J Mol Biol. 1982 May 5;157(1):105-32 [7108955.001]
  • [Cites] Genome Res. 2003 Sep;13(9):2178-89 [12952885.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D561-5 [17145710.001]
  • [Cites] Am J Hum Genet. 2008 Nov;83(5):610-5 [18950739.001]
  • [Cites] Proteomics. 2006 Jan;6(2):449-55 [16317776.001]
  • [Cites] J Proteome Res. 2009 Jan;8(1):104-12 [18954100.001]
  • [Cites] Mol Syst Biol. 2010 Aug 24;6:406 [20739928.001]
  • [Cites] Nature. 2011 May 19;473(7347):337-42 [21593866.001]
  • [Cites] Science. 2008 Nov 7;322(5903):918-23 [18988847.001]
  • [Cites] BMC Syst Biol. 2009 Feb 18;3:21 [19226461.001]
  • [Cites] Genome Res. 2003 Aug;13(8):1863-72 [12902380.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8390-5 [15150418.001]
  • [Cites] Nucleic Acids Res. 2011 Jan;39(Database issue):D253-60 [21081558.001]
  • [Cites] Nat Biotechnol. 2010 Apr;28(4):322-4 [20379172.001]
  • [Cites] Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14508-13 [20699386.001]
  • [Cites] Genome Res. 2001 May;11(5):703-9 [11337469.001]
  • [Cites] Nat Biotechnol. 2008 Feb;26(2):164-7 [18259167.001]
  • [Cites] Nat Protoc. 2009;4(1):44-57 [19131956.001]
  • [Cites] Mol Biol Evol. 2005 Mar;22(3):598-606 [15537804.001]
  • [Cites] Mol Biol Evol. 1986 Sep;3(5):418-26 [3444411.001]
  • [Cites] Trends Cell Biol. 2011 May;21(5):293-303 [21474317.001]
  • [Cites] Nucleic Acids Res. 2005 Jan 1;33(Database issue):D562-6 [15608262.001]
  • [Cites] Nucleic Acids Res. 2010 Jan;38(Database issue):D331-5 [19920128.001]
  • (PMID = 28459865.001).
  • [ISSN] 1932-6203
  • [Journal-full-title] PloS one
  • [ISO-abbreviation] PLoS ONE
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


86. Morales P, Hurst DP, Reggio PH: Molecular Targets of the Phytocannabinoids: A Complex Picture. Prog Chem Org Nat Prod; 2017;103:103-131
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Molecular Targets of the Phytocannabinoids: A Complex Picture.
  • For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., have been used for their medicinal, as well as, their psychotropic effects.
  • These effects are associated with the phytocannabinoids which are oxygen containing C<sub>21</sub> aromatic hydrocarbons found in Cannabis sativa L.
  • To date, over 120 phytocannabinoids have been isolated from Cannabis.
  • For many years, it was assumed that the beneficial effects of the phytocannabinoids were mediated by the cannabinoid receptors, CB<sub>1</sub> and CB<sub>2</sub>.
  • However, today we know that the picture is much more complex, with the same phytocannabinoid acting at multiple targets.
  • This contribution focuses on the molecular pharmacology of the phytocannabinoids, including Δ<sup>9</sup>-THC and CBD, from the prospective of the targets at which these important compounds act.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Br J Pharmacol. 2012 Apr;165(8):2620-34 [21827451.001]
  • [Cites] Pain. 2008 Sep 15;138(3):667-80 [18692962.001]
  • [Cites] Br J Pharmacol. 2002 Nov;137(5):589-96 [12381672.001]
  • [Cites] J Huazhong Univ Sci Technolog Med Sci. 2012 Apr;32(2):265-71 [22528232.001]
  • [Cites] Nat Rev Drug Discov. 2011 Aug 01;10(8):601-20 [21804597.001]
  • [Cites] Br J Pharmacol. 2012 Apr;165(8):2561-74 [21615724.001]
  • [Cites] Nature. 2016 May 18;534(7607):347-51 [27281200.001]
  • [Cites] J Biol Chem. 2009 Oct 23;284(43):29817-27 [19723626.001]
  • [Cites] J Med Chem. 1997 Sep 26;40(20):3228-33 [9379442.001]
  • [Cites] Br J Pharmacol. 2011 Aug;163(7):1479-94 [21175579.001]
  • [Cites] Psychopharmacologia. 1973 Aug 3;31(4):321-32 [4795349.001]
  • [Cites] Pharmacology. 2009;83(5):270-4 [19307742.001]
  • [Cites] Chem Phys Lipids. 2013 Apr;169:46-56 [23485612.001]
  • [Cites] Mol Pharmacol. 2005 Dec;68(6):1623-35 [16157695.001]
  • [Cites] Biochem Soc Trans. 2006 Dec;34(Pt 6):1095-7 [17073758.001]
  • [Cites] Nat Chem Biol. 2011 May;7(5):296-303 [21460829.001]
  • [Cites] J Pharmacol Exp Ther. 2010 May;333(2):547-54 [20160007.001]
  • [Cites] PLoS One. 2011;6(12):e28668 [22163051.001]
  • [Cites] Br J Pharmacol. 2004 Apr;141(7):1118-30 [15006899.001]
  • [Cites] ACS Chem Neurosci. 2014 Nov 19;5(11):1131-41 [25029033.001]
  • [Cites] Life Sci. 2005 Aug 19;77(14 ):1674-84 [16005906.001]
  • [Cites] Nature. 1993 Sep 2;365(6441):61-5 [7689702.001]
  • [Cites] Handb Exp Pharmacol. 2005;(168):1-51 [16596770.001]
  • [Cites] Cell. 2002 Feb 8;108(3):421-30 [11853675.001]
  • [Cites] J Exp Med. 2012 Jun 4;209(6):1121-34 [22585736.001]
  • [Cites] J Pharmacol Exp Ther. 2010 Oct;335(1):92-102 [20592049.001]
  • [Cites] Planta Med. 1983 May;48(1):17-9 [17404934.001]
  • [Cites] Br J Pharmacol. 2016 Mar;173(5):815-25 [26497782.001]
  • [Cites] Annu Rev Biochem. 2007;76:387-417 [17579562.001]
  • [Cites] Phytother Res. 2014 Jul;28(7):1007-13 [24288245.001]
  • [Cites] Br J Pharmacol. 2005 Dec;146(7):917-26 [16205722.001]
  • [Cites] Nat Rev Neurosci. 2001 Apr;2(4):240-50 [11283747.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2010 May;381(5):477-82 [20339834.001]
  • [Cites] Lloydia. 1977 May-Jun;40(3):275-80 [895385.001]
  • [Cites] Curr Med Chem. 1999 Aug;6(8):635-64 [10469884.001]
  • [Cites] Br J Pharmacol. 2015 Mar;172(5):1305-18 [25363799.001]
  • [Cites] Br J Pharmacol. 2007 Mar;150(5):586-94 [17245367.001]
  • [Cites] Pharm Weekbl. 1971 Feb 26;106(9):69-71 [5546952.001]
  • [Cites] Br J Pharmacol. 2010 Jan;159(1):129-41 [20002104.001]
  • [Cites] J Neuroimmune Pharmacol. 2012 Dec;7(4):1002-16 [22971837.001]
  • [Cites] Br J Pharmacol. 2007 Mar;150(5):613-23 [17245363.001]
  • [Cites] Res Commun Chem Pathol Pharmacol. 1976 May;14(1):13-28 [935647.001]
  • [Cites] Eur J Pharmacol. 2009 Jun 10;612(1-3):61-8 [19285060.001]
  • [Cites] J Neurosci. 2008 Jun 11;28(24):6231-8 [18550765.001]
  • [Cites] Curr Opin Ophthalmol. 2016 Mar;27(2):146-50 [26840343.001]
  • [Cites] J Cardiovasc Pharmacol Ther. 2015 Jan;20(1):76-83 [24853683.001]
  • [Cites] Trends Pharmacol Sci. 2009 Oct;30(10):515-27 [19729208.001]
  • [Cites] J Biol Chem. 2007 Jun 22;282(25):18625-33 [17462987.001]
  • [Cites] Psychopharmacologia. 1973 Jun 29;30(4):315-22 [4722202.001]
  • [Cites] J Biol Chem. 1996 Apr 26;271(17):9902-5 [8626625.001]
  • [Cites] Br J Pharmacol. 2007 Nov;152(5):583-93 [17641667.001]
  • [Cites] Br J Pharmacol. 2007 Dec;152(7):1092-101 [17876302.001]
  • [Cites] Biochem Pharmacol. 1995 Jun 29;50(1):83-90 [7605349.001]
  • [Cites] Life Sci. 2005 Dec 22;78(5):539-48 [16199061.001]
  • [Cites] Pharmacology. 2009;83(4):217-22 [19204413.001]
  • [Cites] Bioorg Med Chem. 1999 Dec;7(12):2905-14 [10658595.001]
  • [Cites] Br J Pharmacol. 2013 Oct;170(3):679-92 [23902406.001]
  • [Cites] Chem Phys Lipids. 2002 Dec 31;121(1-2):149-58 [12505697.001]
  • [Cites] Neurochem Res. 2005 Aug;30(8):1037-43 [16258853.001]
  • [Cites] Br J Pharmacol. 2010 Jun;160(3):762-71 [20590578.001]
  • [Cites] J Chromatogr. 1972 Dec 6;74(1):124-7 [4635939.001]
  • [Cites] Trends Pharmacol Sci. 2009 Feb;30(2):79-84 [19070372.001]
  • [Cites] Br J Pharmacol. 1972 Dec;46(4):753-63 [4655271.001]
  • [Cites] Science. 2002 Nov 29;298(5599):1793-6 [12459591.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2006 Feb;372(5):354-61 [16489449.001]
  • [Cites] Biochem Biophys Res Commun. 1995 Oct 4;215(1):89-97 [7575630.001]
  • [Cites] J Biol Chem. 2002 Jun 28;277(26):23278-86 [11956198.001]
  • [Cites] Rev Physiol Biochem Pharmacol. 2008;160:1-24 [18481028.001]
  • [Cites] Acta Physiol (Oxf). 2012 Feb;204(2):255-66 [21726418.001]
  • [Cites] Pharmacol Rev. 2010 Dec;62(4):588-631 [21079038.001]
  • [Cites] Curr Pharm Des. 2016;22(10 ):1361-70 [26806346.001]
  • [Cites] Biochem Biophys Res Commun. 2007 Nov 3;362(4):928-34 [17765871.001]
  • [Cites] Pharmacol Rev. 2010 Sep;62(3):381-404 [20716668.001]
  • [Cites] Nature. 1971 Aug 20;232(5312):579-80 [4937510.001]
  • [Cites] J Biol Chem. 2010 Jun 4;285(23 ):17954-64 [20220143.001]
  • [Cites] Cell Death Dis. 2013 May 02;4:e618 [23640460.001]
  • [Cites] J Biol Chem. 2012 Nov 23;287(48):40216-23 [23038260.001]
  • [Cites] Br J Pharmacol. 2012 Apr;165(8):2414-24 [21595653.001]
  • [Cites] Br J Pharmacol. 2007 Nov;152(5):734-43 [17906680.001]
  • [Cites] Mol Pain. 2005 Apr 22;1:16 [15847696.001]
  • [Cites] J Pharmacol Exp Ther. 2006 Apr;317(1):428-38 [16352700.001]
  • [Cites] Circ Res. 2007 May 25;100(10):1442-51 [17463321.001]
  • [Cites] Biochem Biophys Res Commun. 2005 Nov 25;337(3):824-31 [16213464.001]
  • [Cites] Front Pharmacol. 2014 Jan 02;4:162 [24427137.001]
  • [Cites] J Oral Facial Pain Headache. 2015 Winter;29(1):7-14 [25635955.001]
  • [Cites] Br J Pharmacol. 2004 May;142(1):9-19 [15100161.001]
  • [Cites] J Pharm Sci. 1975 Oct;64(10):1719-20 [1185546.001]
  • [Cites] Br J Pharmacol. 2012 Apr;165(8):2598-610 [21745190.001]
  • [Cites] Chem Biodivers. 2007 Aug;4(8):1678-92 [17712814.001]
  • [Cites] Mol Pharmacol. 2006 Mar;69(3):991-7 [16332990.001]
  • [Cites] J Biol Chem. 2012 Jan 2;287(1):91-104 [22027819.001]
  • [Cites] Br J Pharmacol. 2007 Nov;152(5):576-82 [17704824.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16511-6 [19805329.001]
  • [Cites] Carcinogenesis. 2013 Jan;34(1):48-57 [23079154.001]
  • [Cites] Br J Pharmacol. 2015 Oct;172(20):4790-805 [26218440.001]
  • [Cites] Toxicology. 2014 Dec 4;326:18-24 [25291031.001]
  • [Cites] Cochrane Database Syst Rev. 2016 Feb 02;2:CD007786 [26836199.001]
  • [Cites] Br J Pharmacol. 2008 Jan;153(2):199-215 [17828291.001]
  • [Cites] Nature. 2014 Sep 4;513(7516):124-7 [25043059.001]
  • [Cites] Nature. 1990 Aug 9;346(6284):561-4 [2165569.001]
  • [Cites] J Pharmacol Exp Ther. 2008 Jun;325(3):1007-15 [18354058.001]
  • [Cites] Science. 1992 Dec 18;258(5090):1946-9 [1470919.001]
  • [Cites] Science. 2012 Feb 17;335(6070):851-5 [22344443.001]
  • [Cites] J Med Chem. 1976 Nov;19(11):1328-30 [1003411.001]
  • [Cites] Br J Pharmacol. 2016 Jun;173(12 ):1899-910 [27077495.001]
  • [Cites] J Am Chem Soc. 2007 Mar 28;129(12):3698-702 [17335216.001]
  • [Cites] Tetrahedron Lett. 1967 Mar;12:1109-11 [6039537.001]
  • [Cites] Pharmacol Rev. 1986 Jun;38(2):75-149 [3018800.001]
  • [Cites] Br J Pharmacol. 2015 Feb;172(3):737-53 [25257544.001]
  • [Cites] Eur J Pharmacol. 2002 Dec 5;456(1-3):99-106 [12450575.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2009 Apr;379(4):371-8 [18985319.001]
  • [Cites] J Ethnopharmacol. 1990 Feb;28(1):117-28 [2314109.001]
  • [Cites] J Biol Chem. 2015 May 29;290(22):13895-906 [25847235.001]
  • [Cites] Curr Med Chem. 2010;17 (14 ):1430-49 [20166923.001]
  • [Cites] Chem Biol. 2008 Nov 24;15(11):1207-19 [19022181.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2699-704 [18263732.001]
  • [Cites] Tetrahedron Lett. 1968 Nov;(55):5771-2 [5697175.001]
  • [Cites] Br J Pharmacol. 1998 Jun;124(4):619-22 [9690851.001]
  • [Cites] Neurotoxicol Teratol. 2014 Nov-Dec;46:49-56 [25311884.001]
  • [Cites] ACS Chem Neurosci. 2014 Nov 19;5(11):1107-16 [24915599.001]
  • [Cites] Br J Pharmacol. 2010 Jun;160(3):677-87 [20590571.001]
  • [Cites] J Biol Chem. 2009 May 1;284(18):12328-38 [19286662.001]
  • [Cites] Pharmacol Biochem Behav. 1991 Nov;40(3):541-6 [1806944.001]
  • [Cites] Nat Chem Biol. 2011 May;7(5):249-50 [21502945.001]
  • [Cites] Pharmacol Rev. 2002 Jun;54(2):161-202 [12037135.001]
  • [Cites] J Neurochem. 2006 Jun;97(6):1600-10 [16805771.001]
  • (PMID = 28120232.001).
  • [ISSN] 2191-7043
  • [Journal-full-title] Progress in the chemistry of organic natural products
  • [ISO-abbreviation] Prog Chem Org Nat Prod
  • [Language] eng
  • [Grant] United States / NIDA NIH HHS / DA / K05 DA021358; United States / NIDA NIH HHS / DA / R01 DA003934
  • [Publication-type] Journal Article
  • [Publication-country] Austria
  • [Keywords] NOTNLM ; CB1 receptor / CB2 receptor / CBC / CBD / CBDV / CBE / CBG / CBL / CBN / CBND / CBT / CBV / GPCR / Glycine receptor / PPARγ / Phytocannabinoid / THCV / TRPA1 channel / TRPM8 channel / TRPV1 channel / Δ8-THC / Δ9-THC
  •  go-up   go-down


87. Bolhassani A, Talebi S, Anvar A: Endogenous and exogenous natural adjuvants for vaccine development. Mini Rev Med Chem; 2017 Feb 28;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • c) induction of potent cell-mediated immunity;.
  • Up to now, different exogenous adjuvants have been identified to boost immune responses including inorganic compounds (e.g., alum, calcium phosphate hydroxide), mineral oil, bacterial products (e.g., killed bacteria or toxoids), non-bacterial organics (e.g., squalene), detergents or Quil A, plant saponins, Freund's complete or incomplete adjuvants, and delivery systems.
  • Several main endogenous adjuvants contain cytokines (e.g., IL-1, IL-2, IL-12), chemokines, alarmins (e.g., HSPs, HMGB1), dendritic cells (DCs), toll like receptor (TLR) ligands or agonists, CpG motif, and antibodies.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28245781.001).
  • [ISSN] 1875-5607
  • [Journal-full-title] Mini reviews in medicinal chemistry
  • [ISO-abbreviation] Mini Rev Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Immune response / Natural Adjuvant / Vaccine
  •  go-up   go-down


88. Saulite L, Vavers E, Zvejniece L, Dambrova M, Riekstina U: The Differentiation of Skin Mesenchymal Stem Cells Towards a Schwann Cell Phenotype: Impact of Sigma-1 Receptor Activation. Mol Neurobiol; 2017 Apr 28;
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] The Differentiation of Skin Mesenchymal Stem Cells Towards a Schwann Cell Phenotype: Impact of Sigma-1 Receptor Activation.
  • Recently, it was shown that 2-3% of the human dermis mesenchymal stem cell (MSC) population expresses the NCSC marker CD271, thus enabling the use of skin MSCs for studying Schwann cell differentiation in vitro.
  • The aims of this study were to establish a protocol for human skin MSC differentiation towards Schwann cell-like cells (SC-lcs) and to analyse the expression of sigma-1 receptor (S1R) in SC-lcs.
  • The impact of S1R ligands, namely the selective agonist PRE-084, the positive allosteric modulator E1R and the selective antagonist NE-100, on Schwann cell differentiation was assessed.
  • The expression of the neuron-specific genes Tubulin-βIII and Integrin-6α, the Schwann cell-specific gene S100b, MBP and the NCSC-specific genes p75NTR, Sox10, Notch1, Integrin-4α, Ap2α and Pax6 was analysed in MSCs and SC-lcs by real-time RT-PCR.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28455697.001).
  • [ISSN] 1559-1182
  • [Journal-full-title] Molecular neurobiology
  • [ISO-abbreviation] Mol. Neurobiol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; BDNF / MBP / Mesenchymal stem cells / Schwann cells / Sigma-1 receptor
  •  go-up   go-down


89. Sharma N, Bhagat S, Chundawat TS: Recent Advances in Development of GPR40 Modulators (FFA1/ FFAR1): An Emerging Target for Type 2 diabetes. Mini Rev Med Chem; 2017 Jan 20;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : GPR40, an orphan G-protein coupled receptor that is activated by medium and long-chain fatty acids and is highly expressed in pancreatic islets, adipose depots and the gastrointestinal tract are involved in energy source recognition, absorption, storage and/or metabolism.
  • Since its deorphanization in 2003, G-protein-coupled receptor GPR40 have emerged as potential target for type II diabetes because they have been hypothesized to participate in the adverse effects of chronic fatty acid exposure on function of β-cell.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28117025.001).
  • [ISSN] 1875-5607
  • [Journal-full-title] Mini reviews in medicinal chemistry
  • [ISO-abbreviation] Mini Rev Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  •  go-up   go-down


90. Baatrup E, Døving KB: Histochemical demonstration of mercury in the olfactory system of salmon (Salmo salar L.) following treatments with dietary methylmercuric chloride and dissolved mercuric chloride. Ecotoxicol Environ Saf; 1990 Dec;20(3):277-89
Hazardous Substances Data Bank. MERCURIC CHLORIDE .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The deposition of organic and inorganic mercury compounds was studied histochemically in the salmon (Salmo salar L.) olfactory system.
  • The silver grains evoked by methylmercury were localized predominantly in lysosome-like inclusions within the receptor cells, while those produced by HgCl2 exposure were situated mainly along the borders of neighboring cells.
  • The present findings that organic and inorganic mercury compounds were deposited in the olfactory system along its whole length, from the receptor cell apices to the brain, support the electrophysiological results presented elsewhere (Baatrup et al., 1990, Ecotoxicol. Environ.

  • Hazardous Substances Data Bank. Methylmercuric chloride .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 2090443.001).
  • [ISSN] 0147-6513
  • [Journal-full-title] Ecotoxicology and environmental safety
  • [ISO-abbreviation] Ecotoxicol. Environ. Saf.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] UNITED STATES
  • [Chemical-registry-number] 0 / Mercury Radioisotopes; 0 / Methylmercury Compounds; 53GH7MZT1R / Mercuric Chloride; RWZ4L3O1X0 / methylmercuric chloride
  •  go-up   go-down


91. Hanauer T, Hopkinson RJ, Patel K, Li Y, Correddu D, Kawamura A, Sarojini V, Leung IK, Gruber T: Selective recognition of the di/trimethylammonium motif by an artificial carboxycalixarene receptor. Org Biomol Chem; 2017 Feb 01;15(5):1100-1105

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Selective recognition of the di/trimethylammonium motif by an artificial carboxycalixarene receptor.
  • We report a simple carboxycalixarene that selectively binds molecules containing di/trimethylammonium moieties in isolation, in cell lysates and when incorporated in histone peptides.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28091667.001).
  • [ISSN] 1477-0539
  • [Journal-full-title] Organic & biomolecular chemistry
  • [ISO-abbreviation] Org. Biomol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


92. Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ: Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci; 2017 Jan 24;18(2)
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM).
  • Some of the pathogenic mechanisms through which PM<sub>0.1</sub> may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2).
  • [MeSH-minor] Animals. Antioxidants / metabolism. Biomarkers. Cell Death. Epigenesis, Genetic. Genetic Predisposition to Disease. Humans. Inflammation / etiology. Inflammation / metabolism. Oxidative Stress. Reactive Oxygen Species / metabolism. Respiratory Tract Diseases / etiology. Respiratory Tract Diseases / metabolism. Signal Transduction

  • MedlinePlus Health Information. consumer health - Air Pollution.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Carcinogenesis. 2009 Nov;30(11):1903-9 [19736307.001]
  • [Cites] Nanotoxicology. 2012 May;6(3):249-62 [21495880.001]
  • [Cites] Oncogene. 2001 Nov 22;20(53):7722-33 [11753650.001]
  • [Cites] Part Fibre Toxicol. 2011 Sep 02;8:26 [21888644.001]
  • [Cites] Annu Rev Genet. 2009;43:67-93 [19653858.001]
  • [Cites] J Biol Chem. 2008 Oct 24;283(43):28944-57 [18697742.001]
  • [Cites] Int J Environ Res Public Health. 2016 Jun 14;13(6):null [27314370.001]
  • [Cites] Free Radic Biol Med. 2015 Dec;89:342-57 [26408075.001]
  • [Cites] Environ Sci Technol. 2014;48(3):2043-50 [24397401.001]
  • [Cites] Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 [20216554.001]
  • [Cites] Clin Chem. 2003 Aug;49(8):1292-6 [12881445.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 [16885212.001]
  • [Cites] Environ Res. 2016 Oct;150:306-19 [27336235.001]
  • [Cites] Toxicol Mech Methods. 2015 ;25(4):287-95 [25798650.001]
  • [Cites] J Environ Pathol Toxicol Oncol. 2013;32(1):41-51 [23758151.001]
  • [Cites] Part Fibre Toxicol. 2013 Jun 07;10:22 [23742113.001]
  • [Cites] Toxicol Sci. 2014 Jul;140(1):204-23 [24752502.001]
  • [Cites] Environ Health Perspect. 2007 Aug;115(8):1177-82 [17687444.001]
  • [Cites] Free Radic Biol Med. 2012 May 1;52(9):2038-46 [22401859.001]
  • [Cites] Am J Physiol Lung Cell Mol Physiol. 2006 Oct;291(4):L725-33 [16751223.001]
  • [Cites] Nat Rev Mol Cell Biol. 2013 Nov;14(11):699-712 [24105322.001]
  • [Cites] Autophagy. 2016;12 (2):297-311 [26671423.001]
  • [Cites] Toxicol Lett. 2013 Jun 7;219(3):307-14 [23538036.001]
  • [Cites] J Immunol. 2006 Sep 15;177(6):4080-5 [16951372.001]
  • [Cites] Chem Res Toxicol. 2012 Apr 16;25(4):920-30 [22352400.001]
  • [Cites] Environ Res. 2016 Jan;144(Pt A):139-48 [26610292.001]
  • [Cites] Nanotechnology. 2013 Oct 11;24(40):405102 [24029385.001]
  • [Cites] F1000Res. 2016 Feb 22;5:null [26962445.001]
  • [Cites] Am J Pathol. 1992 Nov;141(5):1237-46 [1443055.001]
  • [Cites] Cancer Sci. 2010 Oct;101(10):2087-92 [20624164.001]
  • [Cites] Am J Respir Cell Mol Biol. 2013 Aug;49(2):204-11 [23672216.001]
  • [Cites] Toxicology. 2013 Nov 8;313(1):3-14 [23238276.001]
  • [Cites] PLoS One. 2013 May 17;8(5):e63812 [23691101.001]
  • [Cites] Am J Respir Crit Care Med. 2011 Apr 1;183(7):898-906 [21037022.001]
  • [Cites] Indian J Exp Biol. 2015 Sep;53(9):585-93 [26548078.001]
  • [Cites] Pharmacol Ther. 2013 Aug;139(2):189-212 [23583354.001]
  • [Cites] BMC Genomics. 2016 Nov 25;17 (1):976 [27887572.001]
  • [Cites] Circ Res. 2008 Mar 14;102(5):589-96 [18202315.001]
  • [Cites] Toxicol Appl Pharmacol. 2014 Nov 1;280(3):511-25 [25178717.001]
  • [Cites] J Immunol. 2012 Jan 1;188(1):68-76 [22156340.001]
  • [Cites] J Biol Chem. 2012 Apr 20;287(17):14004-11 [22396550.001]
  • [Cites] Toxicol Lett. 2014 Apr 21;226(2):107-16 [24472607.001]
  • [Cites] Part Fibre Toxicol. 2015 Mar 19;12:5 [25888760.001]
  • [Cites] Biomaterials. 2010 Aug;31(23):5996-6003 [20466420.001]
  • [Cites] Inhal Toxicol. 2011 Sep;23 (11):627-40 [21879948.001]
  • [Cites] Inhal Toxicol. 2015 ;27(13):724-30 [26525176.001]
  • [Cites] Nat Rev Genet. 2007 Jul;8(7):533-43 [17572691.001]
  • [Cites] Environ Mol Mutagen. 2011 Jul;52(6):425-39 [21259345.001]
  • [Cites] Nature. 2007 Feb 8;445(7128):666-70 [17237763.001]
  • [Cites] Cell Death Dis. 2011 May 19;2:e159 [21593791.001]
  • [Cites] Mutat Res. 2008 Jul-Aug;659(1-2):158-65 [18342568.001]
  • [Cites] Cardiovasc Res. 2015 Jun 1;106(3):465-77 [25824148.001]
  • [Cites] Toxicol In Vitro. 2009 Oct;23(7):1326-32 [19602432.001]
  • [Cites] Hum Mol Genet. 2013 May 15;22(10):1994-2009 [23393155.001]
  • [Cites] Part Fibre Toxicol. 2016 Feb 24;13:10 [26911867.001]
  • [Cites] Hum Mol Genet. 2011 Oct 1;20(19):3852-66 [21752829.001]
  • [Cites] Am J Respir Cell Mol Biol. 2013 Jan;48(1):114-24 [23065132.001]
  • [Cites] Biochem Biophys Res Commun. 2010 Jul 2;397(3):397-400 [20501321.001]
  • [Cites] Am J Pathol. 2011 Jul;179(1):125-33 [21703398.001]
  • [Cites] Nanotoxicology. 2011 Dec;5(4):502-16 [21417802.001]
  • [Cites] J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008 Oct-Dec;26(4):339-62 [19034792.001]
  • [Cites] Toxicol In Vitro. 2015 Apr;29(3):426-37 [25526690.001]
  • [Cites] Toxicol In Vitro. 2004 Apr;18(2):203-12 [14757111.001]
  • [Cites] Biochem Pharmacol. 2006 Nov 30;72(11):1605-21 [16889756.001]
  • [Cites] Toxicol Lett. 2012 Mar 25;209(3):264-9 [22265868.001]
  • [Cites] Genes Dev. 1999 Jan 1;13(1):20-5 [9887096.001]
  • [Cites] Int J Biochem Cell Biol. 1999 Oct;31(10):1209-19 [10582348.001]
  • [Cites] J Cell Sci. 2011 Feb 15;124(Pt 4):647-56 [21266470.001]
  • [Cites] J Innate Immun. 2013;5(6):543-54 [23595026.001]
  • [Cites] Genome Biol. 2010;11(5):R56 [20507594.001]
  • [Cites] Biochem Pharmacol. 2006 Oct 30;72(9):1161-79 [16970925.001]
  • [Cites] Epigenetics. 2014 Mar;9(3):377-86 [24270552.001]
  • [Cites] J Biomed Mater Res A. 2012 Oct;100(10 ):2554-62 [22528760.001]
  • [Cites] J Clin Invest. 2012 Dec;122(12 ):4698-709 [23114599.001]
  • [Cites] Toxicol Lett. 2014 May 16;227(1):29-40 [24614525.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 1999;39:67-101 [10331077.001]
  • [Cites] Semin Cell Dev Biol. 2014 Nov;35:2-13 [25160988.001]
  • [Cites] Part Fibre Toxicol. 2014 Apr 11;11:18 [24725891.001]
  • [Cites] ACS Nano. 2014 Oct 28;8(10):10328-4