[X] Close
You are about to erase all the values you have customized, search history, page format, etc.
Click here to RESET all values       Click here to GO BACK without resetting any value
Items 1 to 100 of about 2351
1. Lee JH, Lee SW: The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches. Gastroenterol Res Pract; 2017;2017:7521987

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Metastasis is a highly complicated and sequential process in which primary cancer spreads to secondary organic sites.
  • CEA inhibits circulating cancer cell death.
  • CEA also binds to heterogeneous nuclear RNA binding protein M4 (hnRNP M4), a Kupffer cell receptor protein, and activates Kupffer cells to secrete various cytokines that change the microenvironments for the survival of colorectal cancer cells in the liver.
  • CEA also activates cell adhesion-related molecules.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancers (Basel). 2011 Jul 07;3(3):2858-69 [24212936.001]
  • [Cites] Br J Cancer. 2015 Jul 14;113(2):268-74 [26035703.001]
  • [Cites] Int J Cancer. 2004 Sep 1;111(3):332-7 [15221959.001]
  • [Cites] Cell Biophys. 1994;24-25:219-28 [7736526.001]
  • [Cites] Am J Pathol. 2005 Sep;167(3):749-59 [16127154.001]
  • [Cites] J Cell Sci. 2004 Feb 15;117(Pt 5):761-9 [14734654.001]
  • [Cites] Ann Oncol. 2006 Jun;17(6):974-80 [16600979.001]
  • [Cites] Semin Cancer Biol. 1999 Apr;9(2):67-81 [10202129.001]
  • [Cites] Br J Cancer. 2013 Feb 19;108(3):662-7 [23322207.001]
  • [Cites] Curr Opin Cell Biol. 1997 Oct;9(5):616-26 [9330864.001]
  • [Cites] Biochem Biophys Res Commun. 2005 Jul 22;333(1):223-9 [15958210.001]
  • [Cites] Cancer Immunol Immunother. 2014 Mar;63(3):225-34 [24327292.001]
  • [Cites] J Signal Transduct. 2011;2011:738137 [21785723.001]
  • [Cites] Nat Rev Clin Oncol. 2014 Aug;11(8):446-59 [24889770.001]
  • [Cites] Ann Intern Med. 2000 Oct 17;133(8):573-84 [11033584.001]
  • [Cites] J Biol Chem. 2000 Sep 1;275(35):26935-43 [10864933.001]
  • [Cites] J Nucl Med. 2010 Nov;51(11):1780-7 [21051650.001]
  • [Cites] Cell Res. 2002 Dec;12(5-6):311-20 [12528889.001]
  • [Cites] Mol Cancer Ther. 2004 Dec;3(12):1559-64 [15634649.001]
  • [Cites] Cancer Gene Ther. 1999 Jul-Aug;6(4):313-21 [10419049.001]
  • [Cites] Cancer Lett. 1995 May 25;92(1):59-66 [7757961.001]
  • [Cites] Nat Med. 2004 May;10(5):475-80 [15122249.001]
  • [Cites] Clin Cancer Res. 2008 Jan 15;14(2):405-11 [18223215.001]
  • [Cites] Nat Med. 2006 Aug;12(8):895-904 [16892035.001]
  • [Cites] Int J Cancer. 2012 Jul 1;131(1):117-28 [21823122.001]
  • [Cites] Cancer Res. 2005 Jul 1;65(13):5935-44 [15994972.001]
  • [Cites] Mol Cell Biol. 2008 Oct;28(19):6033-43 [18644864.001]
  • [Cites] Clin Exp Metastasis. 2004;21(8):709-17 [16035616.001]
  • [Cites] Cancer Biomark. 2016;16(2):245-52 [26756614.001]
  • [Cites] Acta Med Okayama. 2006 Dec;60(6):325-30 [17189976.001]
  • [Cites] Cancer Res. 2001 Apr 1;61(7):2822-6 [11306451.001]
  • [Cites] Cancer Res. 2001 Mar 15;61(6):2732-5 [11289155.001]
  • [Cites] Cell. 2011 Oct 14;147(2):275-92 [22000009.001]
  • [Cites] Lung Cancer. 2012 May;76(2):138-43 [22153832.001]
  • [Cites] Clin Exp Metastasis. 2002;19(2):155-60 [11964079.001]
  • [Cites] PLoS One. 2012;7(6):e39908 [22768164.001]
  • [Cites] Anticancer Res. 2003 Jul-Aug;23(4):3561-4 [12926107.001]
  • [Cites] Cancer Res. 2008 Feb 1;68(3):909-17 [18245494.001]
  • [Cites] Cancer Res. 2007 May 15;67(10):4774-82 [17510406.001]
  • [Cites] J Exp Med. 1965 Sep 1;122(3):467-81 [4953873.001]
  • [Cites] Int J Biol Markers. 1992 Jul-Sep;7(3):189-92 [1431344.001]
  • [Cites] PLoS One. 2011;6(6):e21146 [21731662.001]
  • [Cites] Cancer Res. 2013 Apr 1;73(7):2031-43 [23536564.001]
  • [Cites] Cancer Immunol Immunother. 2013 Aug;62(8):1293-301 [23624851.001]
  • [Cites] Cancer Res. 2003 Mar 15;63(6):1288-96 [12649189.001]
  • [Cites] Gastroenterology. 2012 Jul;143(1):155-65.e8 [22465431.001]
  • [Cites] Handb Exp Pharmacol. 2004;(165):283-341 [20455097.001]
  • [Cites] J Pept Sci. 2012 Apr;18(4):252-60 [22392880.001]
  • [Cites] Anticancer Res. 2010 Dec;30(12):5091-7 [21187495.001]
  • [Cites] Cancer Invest. 2005;23(4):338-51 [16100946.001]
  • [Cites] J Clin Oncol. 2003 Oct 1;21(19):3638-46 [14512395.001]
  • [Cites] Curr Opin Cell Biol. 2001 Oct;13(5):555-62 [11544023.001]
  • [Cites] Arch Biochem Biophys. 1996 Oct 1;334(1):151-7 [8837750.001]
  • [Cites] Genomics. 2013 Oct;102(4):301-9 [23867109.001]
  • [Cites] Cancer Res. 2002 Oct 1;62(19):5393-8 [12359742.001]
  • [Cites] Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13561-6 [26483485.001]
  • [Cites] Cancer Metastasis Rev. 2013 Dec;32(3-4):643-71 [23903773.001]
  • [Cites] J Surg Oncol. 2006 Jul 1;94(1):68-80 [16788948.001]
  • [Cites] Nat Rev Drug Discov. 2010 Jul;9(7):537-50 [20592747.001]
  • [Cites] Nat Immunol. 2013 Oct;14(10):996-1006 [24048121.001]
  • [Cites] Oncogene. 2001 Jan 11;20(2):219-30 [11313949.001]
  • [Cites] J Biol Chem. 2001 Aug 17;276(33):31067-73 [11406629.001]
  • [Cites] Cell. 2006 Nov 17;127(4):679-95 [17110329.001]
  • [Cites] Cancer Res. 2010 Oct 15;70(20):8159-68 [20889724.001]
  • [Cites] Clin Cancer Res. 2016 Jul 1;22(13):3286-97 [26861458.001]
  • [Cites] Science. 2016 Jun 17;352(6292):1417-20 [27313039.001]
  • [Cites] Cancer Epidemiol Biomarkers Prev. 2009 Jun;18(6):1688-94 [19505900.001]
  • [Cites] Cancer Res. 2000 Jul 1;60(13):3419-24 [10910050.001]
  • [Cites] Curr Opin Cell Biol. 2006 Oct;18(5):565-71 [16919437.001]
  • [Cites] CA Cancer J Clin. 2009 Nov-Dec;59(6):366-78 [19897840.001]
  • [Cites] BMC Cancer. 2013 Jul 25;13:359 [23885995.001]
  • [Cites] Cancer Res. 2000 Aug 15;60(16):4475-84 [10969795.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):521-6 [12522268.001]
  • [Cites] Oncol Rep. 2008 Oct;20(4):737-43 [18813812.001]
  • [Cites] J Leukoc Biol. 2011 Jun;89(6):873-91 [21233414.001]
  • [Cites] Exp Cell Res. 2003 Nov 15;291(1):228-41 [14597422.001]
  • [Cites] J Clin Oncol. 2005 Sep 20;23(27):6763-70 [16170184.001]
  • [Cites] Clin Colorectal Cancer. 2006 May;6(1):72-5 [16796796.001]
  • [Cites] Biochim Biophys Acta. 2013 Dec;1833(12):3481-98 [23830918.001]
  • [Cites] Exp Cell Res. 1999 Nov 1;252(2):243-9 [11501563.001]
  • [Cites] Am J Pathol. 2007 May;170(5):1781-92 [17456781.001]
  • [Cites] J Natl Cancer Inst. 1990 Mar 7;82(5):380-5 [2304087.001]
  • [Cites] Nat Rev Immunol. 2006 Jun;6(6):433-46 [16724098.001]
  • [Cites] Oncogene. 2004 Dec 16;23(58):9306-13 [15568039.001]
  • [Cites] Oncogene. 2004 Jan 15;23(2):465-73 [14724575.001]
  • [Cites] Nat Rev Cancer. 2009 Apr;9(4):274-84 [19308067.001]
  • [Cites] J Immunol Methods. 1999 Dec 10;231(1-2):261-73 [10648943.001]
  • [Cites] Oncogene. 2008 Jun 12;27(26):3721-8 [18278069.001]
  • [Cites] Biomed Res Int. 2015;2015:792672 [26161413.001]
  • [Cites] Colorectal Dis. 2007 Jul;9(6):527-31 [17573747.001]
  • [Cites] Genesis. 2008 Sep;46(9):447-62 [18781633.001]
  • [Cites] Cancer Immunol Immunother. 2015 Jun;64(6):677-88 [25742933.001]
  • [Cites] J Nucl Med. 2006 Feb;47(2):247-55 [16455630.001]
  • [Cites] J Cell Biol. 1993 Aug;122(4):951-60 [8349740.001]
  • [Cites] Mol Biol Rep. 2014 Jan;41(1):459-66 [24293105.001]
  • [Cites] Cancer Immunol Immunother. 2005 Apr;54(4):315-27 [15592930.001]
  • [Cites] Recent Pat Anticancer Drug Discov. 2012 Sep;7(3):265-96 [22630596.001]
  • [Cites] BMC Cancer. 2007 Jan 03;7:2 [17201906.001]
  • [Cites] Lancet Oncol. 2001 Sep;2(9):533-43 [11905707.001]
  • [Cites] Cancer Res. 1999 Apr 15;59(8):1825-9 [10213485.001]
  • [Cites] Ann Surg Oncol. 2009 Dec;16(12):3333-9 [19763694.001]
  • [Cites] J Nucl Med. 2006 Apr;47(4):668-78 [16595502.001]
  • [Cites] Int J Cancer. 1993 Apr 1;53(6):892-7 [8386136.001]
  • [Cites] CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 [21296855.001]
  • [Cites] J Natl Cancer Inst. 2011 Apr 20;103(8):689-97 [21421861.001]
  • [Cites] Clin Exp Metastasis. 1994 Jul;12(4):324-8 [8039306.001]
  • [Cites] World J Gastroenterol. 2010 Aug 28;16(32):4084-8 [20731024.001]
  • [Cites] J Cell Physiol. 2007 Jun;211(3):791-802 [17286276.001]
  • [Cites] Nat Rev Cancer. 2003 Jun;3(6):453-8 [12778135.001]
  • [Cites] Cancer Chemother Pharmacol. 2000;46 Suppl:S8-12 [10950140.001]
  • [Cites] Proteomics. 2014 Mar;14(4-5):525-46 [24339177.001]
  • [Cites] Cell Adhes Commun. 1999;7(3):233-44 [10626907.001]
  • [Cites] J Transl Med. 2013 Mar 08;11:62 [23497415.001]
  • [Cites] Hepatol Res. 2010 Jan 1;40(1):83-94 [19788686.001]
  • [Cites] Cytokine. 2000 Jan;12(1):8-11 [10623436.001]
  • [Cites] J Biol Chem. 1991 May 5;266(13):7995-8001 [2022629.001]
  • [Cites] J Exp Med. 2001 Mar 19;193(6):727-40 [11257139.001]
  • [Cites] J Biol Chem. 2011 May 6;286(18):16039-51 [21398516.001]
  • [Cites] Int J Cancer. 1999 Sep 9;82(6):880-5 [10446457.001]
  • [Cites] Clin Exp Metastasis. 2011 Dec;28(8):923-32 [21901530.001]
  • [Cites] Neoplasia. 2002 Mar-Apr;4(2):151-63 [11896570.001]
  • [Cites] Cancer Res. 2001 Jun 15;61(12):4750-5 [11406547.001]
  • [Cites] BMC Biol. 2010 Feb 04;8:12 [20132533.001]
  • (PMID = 28588612.001).
  • [ISSN] 1687-6121
  • [Journal-full-title] Gastroenterology research and practice
  • [ISO-abbreviation] Gastroenterol Res Pract
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Egypt
  •  go-up   go-down


2. Wang J, Lu L, Kok CH, Saunders VA, Goyne JM, Dang P, Leclercq TM, Hughes TP, White DL: Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells. Haematologica; 2017 May;102(5):843-853

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Increased peroxisome proliferator-activated receptor γ activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.
  • Imatinib is actively transported by organic cation transporter-1 (OCT-1) influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib.
  • Herein we report that, in diagnostic chronic myeloid leukemia mononuclear cells and <i>BCR-ABL1</i><sup>+</sup> cell lines, peroxisome proliferator-activated receptor γ agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor γ antagonists (GW9662, T0070907) increase OCT-1 activity.
  • Results were confirmed in peroxisome proliferator-activated receptor γ-transduced K562 cells.
  • Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor γ transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; <i>P</i><0.0001), suggesting that peroxisome proliferator-activated receptor γ activation has a negative impact on the intracellular uptake of imatinib and consequent BCR-ABL kinase inhibition.
  • The inter-patient variability of peroxisome proliferator-activated receptor γ activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis.
  • Recently, the peroxisome proliferator-activated receptor γ agonist pioglitazone was reported to act synergistically with imatinib, targeting the residual chronic myeloid leukemia stem cell pool.
  • Our findings suggest that peroxisome proliferator-activated receptor γ ligands have differential effects on circulating mononuclear cells compared to stem cells.
  • Since the effect of peroxisome proliferator-activated receptor γ activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor γ transcriptional activity.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Ferrata Storti Foundation.
  • [Cites] Biochem Biophys Res Commun. 1997 Apr 28;233(3):756-9 [9168928.001]
  • [Cites] Nature. 2015 Sep 17;525(7569):380-3 [26331539.001]
  • [Cites] J Immunol. 2002 Mar 15;168(6):2828-34 [11884452.001]
  • [Cites] Blood Cancer J. 2016 Jan 08;6:e377 [26745851.001]
  • [Cites] Nat Rev Immunol. 2002 Oct;2(10):748-59 [12360213.001]
  • [Cites] Blood. 1998 Jul 15;92 (2):607-15 [9657762.001]
  • [Cites] J Clin Oncol. 2007 Oct 1;25(28):4445-51 [17906206.001]
  • [Cites] Haematologica. 2011 Feb;96(2):213-20 [20971815.001]
  • [Cites] Leukemia. 2010 Apr;24(4):765-70 [20147974.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2005 Feb;288(2):G207-12 [15458920.001]
  • [Cites] FASEB J. 2015 Sep;29(9):3638-53 [25985799.001]
  • [Cites] Am J Hematol. 2006 Apr;81(4):242-55 [16550520.001]
  • [Cites] Blood. 2007 Dec 1;110(12):4064-72 [17761829.001]
  • [Cites] Microcirculation. 2011 Oct;18(7):583-97 [21672077.001]
  • [Cites] Nucl Recept Signal. 2006;4:e010 [16741568.001]
  • [Cites] Circ Res. 2000 Sep 15;87(6):516-21 [10988245.001]
  • [Cites] Br J Haematol. 2002 Oct;119(1):38-45 [12358901.001]
  • [Cites] Leukemia. 2010 Apr;24(4):855-7 [20147980.001]
  • [Cites] J Clin Invest. 2010 Oct;120(10):3443-54 [20852389.001]
  • [Cites] Cell. 1999 Apr 16;97(2):161-3 [10219237.001]
  • [Cites] PPAR Res. 2008;2008:834612 [18528522.001]
  • [Cites] J Biol Chem. 1997 Mar 21;272(12):8071-6 [9065481.001]
  • [Cites] Leukemia. 2015 Oct;29(10):1960-9 [26122430.001]
  • [Cites] Blood Cells Mol Dis. 2002 Mar-Apr;28(2):260-74 [12064921.001]
  • [Cites] Blood. 2010 Oct 14;116(15):2776-8 [20634379.001]
  • [Cites] Blood. 2015 Feb 5;125(6):915-23 [25519749.001]
  • [Cites] Leuk Res. 2009 May;33(5):686-92 [19131110.001]
  • [Cites] Haematologica. 2012 Jun;97(6):907-14 [22207690.001]
  • [Cites] Clin Cancer Res. 2008 Jun 15;14 (12 ):3881-8 [18559609.001]
  • [Cites] Leukemia. 2009 Sep;23(9):1622-7 [19357699.001]
  • [Cites] J Clin Oncol. 2010 Jan 20;28(3):424-30 [20008622.001]
  • [Cites] BMC Cancer. 2013 Apr 02;13:173 [23547655.001]
  • [Cites] Exp Hematol. 2012 Oct;40(10):811-9.e2 [22677017.001]
  • [Cites] J Clin Oncol. 2010 Jun 1;28(16):2761-7 [20421539.001]
  • [Cites] J Clin Invest. 2003 Sep;112(6):945-55 [12975479.001]
  • [Cites] Leukemia. 2015 Aug;29(8):1792-4 [25676419.001]
  • [Cites] Biochem J. 2000 Sep 15;350 Pt 3:829-37 [10970799.001]
  • [Cites] Hematology Am Soc Hematol Educ Program. 2013;2013:168-75 [24319178.001]
  • [Cites] Br J Cancer. 2012 May 22;106(11):1772-8 [22531634.001]
  • [Cites] Endocrinology. 1996 Jan;137(1):354-66 [8536636.001]
  • [Cites] Blood. 2010 Nov 11;116(19):3758-65 [20679528.001]
  • [Cites] Cancer. 2012 Mar 1;118(5):1181-91 [22038681.001]
  • [Cites] Trends Pharmacol Sci. 2015 Oct;36(10):688-704 [26435213.001]
  • [Cites] Blood. 2005 Oct 1;106(7):2520-6 [15956284.001]
  • [Cites] Cancer Immunol Immunother. 2012 Aug;61(8):1155-67 [22692756.001]
  • [Cites] Leukemia. 2010 Nov;24(11):1962-5 [20811406.001]
  • [Cites] Blood. 2006 Jul 15;108(2):697-704 [16597591.001]
  • [Cites] Blood. 2008 Nov 15;112(10):3965-73 [18768781.001]
  • [Cites] Stem Cells. 2009 Oct;27(10 ):2457-68 [19609939.001]
  • (PMID = 28154092.001).
  • [ISSN] 1592-8721
  • [Journal-full-title] Haematologica
  • [ISO-abbreviation] Haematologica
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Italy
  •  go-up   go-down


3. Santiago C, Mudgal G, Reguera J, Recacha R, Albrecht S, Enjuanes L, Casasnovas JM: Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection. Sci Rep; 2017 Apr 10;7:46045
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Cell surface aminopeptidase N (APN) is a membrane-bound ectoenzyme that hydrolyzes proteins and peptides and regulates numerous cell functions.
  • APN participates in tumor cell expansion and motility, and is a target for cancer therapies.
  • APN is also a major cell entry receptor for coronavirus, which binds to a region distant from the active site.
  • In addition, drugs that bind the active site inhibited both coronavirus binding to cell surface APN and infection; the drugs probably hindered APN transition to the virus-specific open form.
  • We conclude that allosteric inhibition of APN functions occurs by ligand suppression of ectodomain motions necessary for catalysis and virus cell entry, as validated by locking APN with disulfides.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Virol. 2007 Feb;81(3):1261-73 [17093189.001]
  • [Cites] Nat Struct Mol Biol. 2011 May;18(5):604-13 [21478864.001]
  • [Cites] Bioorg Med Chem. 2013 Apr 1;21(7):2135-44 [23428964.001]
  • [Cites] Cancer Sci. 2011 Mar;102(3):501-8 [21205077.001]
  • [Cites] Heart Fail Rev. 2008 Sep;13(3):293-8 [18008160.001]
  • [Cites] Exp Hematol. 1997 Jun;25(6):521-9 [9197331.001]
  • [Cites] Nat Chem Biol. 2013 Jul;9(7):462-5 [23644478.001]
  • [Cites] Biosci Trends. 2010 Apr;4(2):56-60 [20448342.001]
  • [Cites] Bioorg Med Chem. 2011 Sep 15;19(18):5716-33 [21843945.001]
  • [Cites] Cancer Sci. 2015 Jul;106(7):921-8 [25950387.001]
  • [Cites] J Gen Virol. 2011 May;92(Pt 5):1117-26 [21228126.001]
  • [Cites] Clin Exp Metastasis. 1995 Sep;13(5):337-44 [7641419.001]
  • [Cites] Blood. 2008 Oct 1;112(7):2628-35 [18574027.001]
  • [Cites] FASEB J. 1993 Feb 1;7(2):290-8 [8440407.001]
  • [Cites] Trends Mol Med. 2008 Aug;14(8):361-71 [18603472.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17966-71 [23071329.001]
  • [Cites] PLoS Pathog. 2012;8(8):e1002859 [22876187.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4588-93 [17360568.001]
  • [Cites] Biochemistry. 1990 Jan 9;29(1):305-8 [1969748.001]
  • [Cites] Cancer Res. 2000 Feb 1;60(3):722-7 [10676659.001]
  • [Cites] Biol Pharm Bull. 2004 Jun;27(6):772-6 [15187415.001]
  • [Cites] ACS Med Chem Lett. 2012 Sep 21;3(12):959-64 [24900417.001]
  • [Cites] J Mol Biol. 2005 Jun 17;349(4):787-800 [15893768.001]
  • [Cites] J Biol Chem. 2012 Oct 26;287(44):36804-13 [22932899.001]
  • [Cites] Nature. 1992 Jun 4;357(6377):420-2 [1350662.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [20124702.001]
  • [Cites] Bioorg Med Chem. 2015 Jul 1;23(13):3192-207 [25982416.001]
  • [Cites] Proc Natl Acad Sci U S A. 2011 May 10;108(19):7745-50 [21508329.001]
  • [Cites] Med Res Rev. 2006 Jan;26(1):88-130 [16216010.001]
  • [Cites] FEBS Lett. 1994 Oct 31;354(1):1-6 [7957888.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13339-44 [16938892.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3 [15299374.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1089-97 [19770506.001]
  • [Cites] J Virol. 1994 Aug;68(8):5216-24 [7913510.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [15572765.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2001 Oct;57(Pt 10):1373-82 [11567148.001]
  • [Cites] Adv Exp Med Biol. 2000;477:25-34 [10849727.001]
  • [Cites] Nature. 1992 Jun 4;357(6377):417-20 [1350661.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [20124692.001]
  • [Cites] Adv Virus Res. 2006;66:193-292 [16877062.001]
  • [Cites] Virus Res. 2014 Dec 19;194:3-15 [25451063.001]
  • (PMID = 28393915.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Grant] United States / NIAID NIH HHS / AI / P01 AI054456
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


Advertisement
4. Haruta M, Sussman MR: Ligand Receptor-Mediated Regulation of Growth in Plants. Curr Top Dev Biol; 2017;123:331-363
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Ligand Receptor-Mediated Regulation of Growth in Plants.
  • In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses.
  • For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size.
  • The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy.
  • Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes.
  • With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
  • [MeSH-major] Plant Development. Plants / metabolism. Receptors, Cell Surface / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28236971.001).
  • [ISSN] 1557-8933
  • [Journal-full-title] Current topics in developmental biology
  • [ISO-abbreviation] Curr. Top. Dev. Biol.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Ligands; 0 / Plant Growth Regulators; 0 / Receptors, Cell Surface
  • [Keywords] NOTNLM ; Arabidopsis (major topic) / Cell expansion (major topic) / Peptide hormone (major topic) / Phosphorylation (major topic) / Protein kinase (major topic) / Receptor-like kinase (major topic)
  •  go-up   go-down


5. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D: [Insulin-mimetic property of vanadium compounds]. Postepy Biochem; 2016;62(1):60-65
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : Vanadium is a transition metal which creates a number of inorganic and organic derivatives with various organic substances.
  • They have anti-tumor properties, capable of inhibiting cell proliferation at the concentrations of several micromoles.
  • As they can increase the activity of the insulin-like growth factor I receptor, they stimulate glycogen synthesis, increase the number of GLUT-4 transporters in the cell membrane and impair gluconeogenesis.
  • Thanks to their mitotic properties, low concentrations of vanadium compounds are also able to induce β cell regeneration.
  • However, the range of therapeutic concentrations is very narrow; at concentrations as low a several micromoles vanadium compounds inhibit cell proliferation and cause apoptosis, necrosis and inflammation.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28132446.001).
  • [ISSN] 0032-5422
  • [Journal-full-title] Postepy biochemii
  • [ISO-abbreviation] Postepy Biochem.
  • [Language] pol
  • [Publication-type] English Abstract; Journal Article; Review
  • [Publication-country] Poland
  • [Keywords] NOTNLM ; diabetes mellitus / insulin / vanadium
  •  go-up   go-down


6. Van den Bossche L, Borsboom D, Devriese S, Van Welden S, Holvoet T, Devisscher L, Hindryckx P, De Vos M, Laukens D: Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis. Lab Invest; 2017 May;97(5):519-529

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD).
  • Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF<sup>ΔARE/WT</sup> mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction.
  • Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28165466.001).
  • [ISSN] 1530-0307
  • [Journal-full-title] Laboratory investigation; a journal of technical methods and pathology
  • [ISO-abbreviation] Lab. Invest.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


7. Giambartolomei GH, Arriola Benitez PC, Delpino MV: &lt;i&gt;Brucella&lt;/i&gt; and Osteoarticular Cell Activation: Partners in Crime. Front Microbiol; 2017;8:256

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] <i>Brucella</i> and Osteoarticular Cell Activation: Partners in Crime.
  • The molecular mechanisms implicated in bone damage have been recently elucidated. <i>B. abortus</i> induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved.
  • These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. <i>B. abortus</i> also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage.
  • The analysis of <i>B. abortus</i>-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Semin Arthritis Rheum. 1982 Nov;12 (2):245-55 [6101216.001]
  • [Cites] Bone. 2006 Sep;39(3):658-65 [16690366.001]
  • [Cites] J Immunol. 2004 Oct 1;173(7):4635-42 [15383598.001]
  • [Cites] N Engl J Med. 2005 Jun 2;352(22):2325-36 [15930423.001]
  • [Cites] Calcif Tissue Int. 2012 Sep;91(3):215-24 [22865265.001]
  • [Cites] Bone. 2010 Sep;47(3):472-9 [20601290.001]
  • [Cites] Arthritis Res Ther. 2006;8(1):201 [16356195.001]
  • [Cites] Clin Dev Immunol. 2013;2013:720504 [23935650.001]
  • [Cites] J Clin Invest. 2005 Feb;115(2):282-90 [15668736.001]
  • [Cites] Arthritis Rheum. 2001 May;44(5):1003-12 [11352231.001]
  • [Cites] Am J Pathol. 2012 Sep;181(3):887-96 [22901753.001]
  • [Cites] Cell Microbiol. 2005 Oct;7(10):1459-73 [16153245.001]
  • [Cites] Immunology. 1993 Nov;80(3):458-64 [8288319.001]
  • [Cites] Nat Rev Rheumatol. 2009 Dec;5(12):667-76 [19884898.001]
  • [Cites] Am J Pathol. 2006 Sep;169(3):987-98 [16936272.001]
  • [Cites] Infect Immun. 2011 Jan;79(1):192-202 [20956574.001]
  • [Cites] J Bone Miner Res. 1993 Feb;8(2):147-55 [8442433.001]
  • [Cites] J Exp Med. 2000 Jan 17;191(2):275-86 [10637272.001]
  • [Cites] Adv Exp Med Biol. 2010;658:61-8 [19950016.001]
  • [Cites] Nucl Med Commun. 2005 Jul;26(7):639-47 [15942485.001]
  • [Cites] J Biol Chem. 2000 Feb 18;275(7):4858-64 [10671521.001]
  • [Cites] J Rheumatol. 2003 Jun;30(6):1291-7 [12784405.001]
  • [Cites] J Immunol. 2013 Jan 1;190(1):401-10 [23225890.001]
  • [Cites] J Biochem. 2016 Jan;159(1):1-8 [26538571.001]
  • [Cites] J Exp Med. 2006 Nov 27;203(12):2673-82 [17088434.001]
  • [Cites] J Infect Dis. 2016 Jul 1;214(1):151-60 [26951819.001]
  • [Cites] Clin Rheumatol. 2002 Jun;21(3):191-3 [12111621.001]
  • [Cites] J Endocrinol Invest. 2009;32(4 Suppl):6-9 [19724159.001]
  • [Cites] Biochem Biophys Res Commun. 2009 Nov 20;389(3):550-5 [19748486.001]
  • [Cites] Clin Infect Dis. 2008 Feb 1;46(3):426-33 [18181740.001]
  • [Cites] Baillieres Clin Rheumatol. 1995 Feb;9(1):161-77 [7728879.001]
  • [Cites] Front Biosci. 2006 Jan 01;11:529-43 [16146751.001]
  • [Cites] Immunity. 2004 Jun;20(6):707-18 [15189736.001]
  • [Cites] Microbes Infect. 2009 May-Jun;11(6-7):689-97 [19376263.001]
  • [Cites] Infection. 2008 Dec;36(6):578-9 [19020802.001]
  • [Cites] Infect Immun. 1995 Apr;63(4):1387-90 [7890399.001]
  • [Cites] Lancet Infect Dis. 2006 Feb;6(2):91-9 [16439329.001]
  • [Cites] Int J Infect Dis. 2010 Jun;14(6):e469-78 [19910232.001]
  • [Cites] Biomed Res Int. 2016;2016:9089610 [26977415.001]
  • [Cites] Nat Med. 2006 Jun;12(6):657-64 [16715089.001]
  • [Cites] Scand J Infect Dis. 2004;36(1):65-7 [15000565.001]
  • [Cites] Infect Immun. 1995 Feb;63(2):720-3 [7822049.001]
  • [Cites] Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3597-602 [9520411.001]
  • [Cites] J Periodontal Res. 2006 Oct;41(5):411-7 [16953818.001]
  • [Cites] Arthritis Res Ther. 2009;11(1):R21 [19220900.001]
  • [Cites] Infect Immun. 2005 Jan;73(1):126-34 [15618147.001]
  • [Cites] Arch Biochem Biophys. 2008 May 15;473(2):188-92 [18424255.001]
  • [Cites] J Hepatol. 2010 Jul;53(1):145-54 [20452697.001]
  • [Cites] Ann Saudi Med. 1999 Sep-Oct;19(5):403-5 [17277503.001]
  • [Cites] J Biol Chem. 2016 Jun 17;291(25):13028-39 [27129247.001]
  • [Cites] J Clin Invest. 1994 Dec;94(6):2397-406 [7989596.001]
  • [Cites] Med Mol Morphol. 2015 Jun;48(2):61-8 [25791218.001]
  • [Cites] Microbes Infect. 2001 Jan;3(1):43-8 [11226853.001]
  • [Cites] Inflamm Res. 2004 Nov;53(11):596-600 [15693607.001]
  • [Cites] J Clin Invest. 1993 Jan;91(1):257-63 [8423223.001]
  • [Cites] J Cell Sci. 2009 Jan 15;122(Pt 2):171-7 [19118209.001]
  • [Cites] Genes Immun. 2008 Oct;9(7):591-601 [18650834.001]
  • [Cites] Nat Rev Mol Cell Biol. 2001 Nov;2(11):793-805 [11715046.001]
  • [Cites] J Infect Dis. 2011 Apr 15;203(8):1136-46 [21451002.001]
  • [Cites] Am J Pathol. 2010 Mar;176(3):1323-38 [20093491.001]
  • [Cites] J Exp Med. 1993 Nov 1;178(5):1733-44 [8228819.001]
  • [Cites] Infect Immun. 2011 Sep;79(9):3619-32 [21730088.001]
  • [Cites] Nature. 1999 Nov 18;402(6759):304-9 [10580503.001]
  • [Cites] Infect Immun. 2012 Jul;80(7):2333-45 [22547546.001]
  • [Cites] J Bone Miner Res. 2001 Dec;16(12):2222-31 [11760835.001]
  • [Cites] Immunol Rev. 2010 Jan;233(1):233-55 [20193003.001]
  • [Cites] Springer Semin Immunopathol. 2005 Mar;26(4):433-52 [15633016.001]
  • [Cites] J Infect Dis. 2012 Jul 1;206(1):91-8 [22561364.001]
  • [Cites] Arthritis Res Ther. 2010;12(1):R29 [20167120.001]
  • [Cites] J Med Microbiol. 2010 Dec;59(Pt 12):1514-8 [20724508.001]
  • [Cites] J Immunol. 1987 Feb 1;138(3):775-9 [3805716.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13960-5 [11717453.001]
  • [Cites] Nat Rev Immunol. 2007 Apr;7(4):292-304 [17380158.001]
  • [Cites] Biochem Biophys Res Commun. 1981 Oct 30;102(4):1358-65 [6947798.001]
  • [Cites] J Bone Miner Res. 2002 Nov;17(11):2068-79 [12412815.001]
  • [Cites] Curr Opin Immunol. 2012 Jun;24(3):297-302 [22341735.001]
  • [Cites] Int J Infect Dis. 2002 Sep;6(3):182-6 [12718832.001]
  • [Cites] Br J Rheumatol. 1997 Mar;36(3):377-81 [9133973.001]
  • [Cites] Injury. 2016 Nov;47(11):2399-2406 [27809990.001]
  • [Cites] Dis Model Mech. 2013 May;6(3):811-8 [23519029.001]
  • [Cites] Infect Immun. 2009 Mar;77(3):984-95 [19103778.001]
  • [Cites] Infect Immun. 2013 Jun;81(6):1940-51 [23509146.001]
  • [Cites] Am J Pathol. 1999 Jan;154(1):203-10 [9916934.001]
  • [Cites] J Leukoc Biol. 2012 Aug;92(2):375-87 [22636321.001]
  • [Cites] Curr Opin Pharmacol. 2016 Jun;28:24-30 [26927500.001]
  • [Cites] Clin Immunol. 2005 Jan;114(1):17-26 [15596405.001]
  • [Cites] J Clin Invest. 2000 Nov;106(10):1229-37 [11086024.001]
  • [Cites] J Leukoc Biol. 2012 Feb;91(2):285-98 [22075930.001]
  • [Cites] Microbes Infect. 2016 Sep;18(9):529-35 [27109230.001]
  • [Cites] Infect Immun. 1996 Jul;64(7):2371-80 [8698454.001]
  • [Cites] Cell Death Differ. 2005 Nov;12 Suppl 2:1473-7 [16247493.001]
  • [Cites] J Bone Miner Res. 2011 Feb;26(2):229-38 [21254230.001]
  • [Cites] Intern Med. 2011;50(5):421-8 [21372451.001]
  • (PMID = 28265268.001).
  • [Journal-full-title] Frontiers in microbiology
  • [ISO-abbreviation] Front Microbiol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; B and T cells and Brucella / osteoarticular brucellosis / osteoblast / osteoclastogenesis / synoviocyte
  •  go-up   go-down


8. Bondar A, Lazar J: The G protein G&lt;sub&gt;i1&lt;/sub&gt; exhibits basal coupling but not preassembly with G protein-coupled receptors. J Biol Chem; 2017 Jun 09;292(23):9690-9698

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gα<sub>i1</sub> subunits labeled with fluorescent proteins and four GPCRs: the α<sub>2A</sub>-adrenergic receptor, GABA<sub>B</sub>, cannabinoid receptor type 1 (CB<sub>1</sub>R), and dopamine receptor type 2.
  • 2PPM experiments with non-mutated fluorescently labeled Gα<sub>i1</sub> subunits and α<sub>2A</sub>-adrenergic receptor, GABA<sub>B</sub>, or dopamine receptor type 2 receptors did not reveal any interaction between the G<sub>i1</sub> protein and the non-stimulated GPCRs.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
  • [Cites] J Physiol. 2007 Apr 1;580(Pt 1):51-65 [17185339.001]
  • [Cites] Pflugers Arch. 1981 Aug;391(2):85-100 [6270629.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18706-11 [16352729.001]
  • [Cites] FASEB J. 2008 Aug;22(8):2920-7 [18434433.001]
  • [Cites] Nat Rev Mol Cell Biol. 2008 Jan;9(1):60-71 [18043707.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16077-82 [14673086.001]
  • [Cites] J Biol Chem. 2007 Jun 29;282(26):19203-16 [17420253.001]
  • [Cites] J Am Chem Soc. 2012 Nov 21;134(46):19026-34 [23095089.001]
  • [Cites] Nat Methods. 2005 Mar;2(3):177-84 [15782186.001]
  • [Cites] Nat Methods. 2011 Jul 03;8(8):684-90 [21725301.001]
  • [Cites] J Biol Chem. 2004 Aug 20;279(34):35287-97 [15197187.001]
  • [Cites] PLoS One. 2014 Nov 24;9(11):e113873 [25419571.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2002 Nov;366(5):381-416 [12382069.001]
  • [Cites] Nature. 1995 Mar 16;374(6519):272-6 [7885448.001]
  • [Cites] Biochemistry. 2006 May 2;45(17 ):5606-17 [16634642.001]
  • [Cites] Protein Sci. 2013 Jan;22(1):101-13 [23184890.001]
  • [Cites] J Biol Chem. 2014 Jan 17;289(3):1271-81 [24307173.001]
  • [Cites] Trends Pharmacol Sci. 2008 Mar;29(3):159-65 [18262662.001]
  • [Cites] Nat Chem Biol. 2011 Sep 19;7(10):657-8 [21931312.001]
  • [Cites] Q Rev Biophys. 2006 May;39(2):117-66 [16923326.001]
  • [Cites] J Mol Cell Biol. 2013 Aug;5(4):250-65 [23585691.001]
  • [Cites] Nat Chem Biol. 2011 Aug 28;7(10):740-7 [21873996.001]
  • [Cites] J Biol Chem. 1997 Aug 29;272(35):22330-9 [9268384.001]
  • [Cites] J Biol Chem. 2002 Aug 9;277(32):28803-9 [12048213.001]
  • [Cites] Nat Struct Mol Biol. 2006 Sep;13(9):778-86 [16906158.001]
  • [Cites] Biophys J. 1994 Sep;67(3):1345-57 [7811949.001]
  • [Cites] EMBO J. 2005 Dec 7;24(23):4106-14 [16292347.001]
  • [Cites] J Biol Chem. 2004 Aug 20;279(34):36013-21 [15210689.001]
  • [Cites] Naunyn Schmiedebergs Arch Pharmacol. 2009 May;379(5):435-43 [19048232.001]
  • [Cites] Traffic. 2012 Nov;13(11):1450-6 [22816793.001]
  • [Cites] Mol Endocrinol. 2009 May;23(5):590-9 [19196832.001]
  • [Cites] J Neurosci. 1999 Nov 1;19(21):9271-80 [10531431.001]
  • [Cites] Br J Pharmacol. 2008 Mar;153 Suppl 1:S125-32 [18193071.001]
  • [Cites] J Biol Chem. 2004 Jun 25;279(26):27709-18 [15078878.001]
  • [Cites] Biochemistry. 1978 Sep 5;17(18):3795 [212105.001]
  • [Cites] J Biol Chem. 2003 Feb 28;278(9):7278-84 [12446706.001]
  • [Cites] FEBS Lett. 2003 Aug 28;550(1-3):11-7 [12935878.001]
  • [Cites] Biochemistry. 1988 Apr 5;27(7):2374-84 [2838071.001]
  • [Cites] Mol Pharmacol. 2007 May;71(5):1329-40 [17267663.001]
  • (PMID = 28438833.001).
  • [ISSN] 1083-351X
  • [Journal-full-title] The Journal of biological chemistry
  • [ISO-abbreviation] J. Biol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Receptors, G-Protein-Coupled; EC 3.6.5.1 / GNAI1 protein, human; EC 3.6.5.1 / GTP-Binding Protein alpha Subunits, Gi-Go
  • [Keywords] NOTNLM ; G protein / G protein-coupled receptor (GPCR) / GABA receptor / adrenergic receptor / basal coupling / cannabinoid receptor type 1 (CB1) / dopamine receptor type 2 (D2R) / preassembly / signal transduction / two-photon polarization microscopy
  •  go-up   go-down


9. Hearps AC, Tyssen D, Srbinovski D, Bayigga L, Diaz DJ, Aldunate M, Cone RA, Gugasyan R, Anderson DJ, Tachedjian G: Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol; 2017 Apr 12;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here we demonstrate that lactic acid (LA), a major organic acid metabolite produced by lactobacilli, mediates anti-inflammatory effects on human cervicovaginal epithelial cells.
  • Treatment of human vaginal and cervical epithelial cell lines with LA (pH 3.9) elicited significant increases in the production of the anti-inflammatory cytokine IL-1RA.
  • When added simultaneously or prior to stimulation, LA inhibited the Toll-like receptor agonist-elicited production of inflammatory mediators IL-6, IL-8, TNFα, RANTES, and MIP3α from epithelial cell lines and prevented IL-6 and IL-8 production by seminal plasma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28401934.001).
  • [ISSN] 1935-3456
  • [Journal-full-title] Mucosal immunology
  • [ISO-abbreviation] Mucosal Immunol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


10. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X: Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J Pineal Res; 2017 May;62(4)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Several functions of melatonin are mediated by its membrane receptors, but others are receptor-independent.
  • In this study, it was identified that melatonin and its sulfation metabolites were the substrates of oligopeptide transporter (PEPT) 1/2 and organic anion transporter (OAT) 3, respectively.
  • For the first time, PEPT1/2 were identified to localize in the mitochondrial membrane of human cancer cell lines of PC3 and U118.
  • Thus, PEPT1/2 can potentially be used as a cancer cell-targeted melatonin delivery system to improve the therapeutic effects of melatonin in cancer treatment.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
  • (PMID = 28099762.001).
  • [ISSN] 1600-079X
  • [Journal-full-title] Journal of pineal research
  • [ISO-abbreviation] J. Pineal Res.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; PEPT1/2 / apoptosis / cancer / melatonin / mitochondria / transporters
  •  go-up   go-down


11. Zha GF, Qin HL, Youssif BGM, Amjad MW, Raja MAG, Abdelazeem AH, Bukhari SNA: Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur J Med Chem; 2017 Jul 28;135:34-48
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • In comparison with traditional therapy, multi-targeted drugs directly aim cell subpopulations which are involved in progression of tumor.
  • The growth of 5 various cancer cell types was strongly inhibited by ligustrazine-containing oximes as revealed by biological evaluation.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28431353.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Keywords] NOTNLM ; BRAF / Cancer cell lines / Epidermal growth factor receptor (EGFR) / Focal adhesion kinase (FAK) / Tubulin polymerization
  •  go-up   go-down


12. Dai Y, Huo X, Zhang Y, Yang T, Li M, Xu X: Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area. Sci Total Environ; 2017 Aug 15;592:51-59

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Improper dismantling and combustion of electronic waste (e-waste) may release persistent organic pollutants and heavy metals that possess potential risk for human health.
  • The aim of the study was to investigate the effect of Pb exposure on blood morphology and erythrocyte complement receptor 1 (CR1) levels as related to immunologic function in preschool children.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28301822.001).
  • [ISSN] 1879-1026
  • [Journal-full-title] The Science of the total environment
  • [ISO-abbreviation] Sci. Total Environ.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Electronic waste / Erythrocyte complement receptor type 1 / Erythrocyte immunity / Lead / Preschool children
  •  go-up   go-down


13. Kandhasamy S, Ramanathan G, Muthukumar T, Thyagarajan S, Umamaheshwari N, Santhanakrishnan VP, Sivagnanam UT, Perumal PT: Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics. Mater Sci Eng C Mater Biol Appl; 2017 May 01;74:70-85

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines.
  • Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines.
  • In addition, molecular docking (PDB ID: 1T46) studies were performed to predict the binding affinity of ligand with receptor.
  • Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines.
  • [MeSH-minor] Animals. Anti-Infective Agents / chemistry. Anti-Infective Agents / pharmacology. Antineoplastic Agents / chemistry. Antineoplastic Agents / toxicity. Apoptosis / drug effects. Binding Sites. Candida albicans / drug effects. Catalysis. Cell Line, Tumor. DNA Fragmentation / drug effects. Drug Liberation. Ferric Compounds / chemistry. Humans. MCF-7 Cells. Methicillin-Resistant Staphylococcus aureus / drug effects. Mice. Microscopy, Electron, Scanning. Molecular Docking Simulation. NIH 3T3 Cells. Protein Structure, Tertiary. Proto-Oncogene Proteins c-kit / chemistry. Proto-Oncogene Proteins c-kit / metabolism. Pseudomonas aeruginosa / drug effects. Spectroscopy, Fourier Transform Infrared. X-Ray Diffraction

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28254336.001).
  • [ISSN] 1873-0191
  • [Journal-full-title] Materials science & engineering. C, Materials for biological applications
  • [ISO-abbreviation] Mater Sci Eng C Mater Biol Appl
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Anti-Infective Agents; 0 / Antineoplastic Agents; 0 / Ferric Compounds; 0 / Phenazines; 0 / Pyrazolones; 0 / phenazine; 39455-90-8 / pyrazolone; EC 2.7.10.1 / Proto-Oncogene Proteins c-kit
  • [Keywords] NOTNLM ; Electrospinning / Hep-2 / MCF-7 / Nanofibrous scaffold / Nanomaterial / Tissue engineering
  •  go-up   go-down


14. Zahajská L, Nisler J, Voller J, Gucký T, Pospíšil T, Spíchal L, Strnad M: Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry; 2017 Mar;135:115-127
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The latter were further tested for their ability to activate the Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 in bacterial receptor activation assays.
  • Therefore, we also present and discuss the cytotoxicity of all the compounds against three normal human cell lines.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Elsevier Ltd. All rights reserved.
  • (PMID = 27986278.001).
  • [ISSN] 1873-3700
  • [Journal-full-title] Phytochemistry
  • [ISO-abbreviation] Phytochemistry
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Cytokinins; 0 / Plant Growth Regulators; EC 2.7.- / Protein Kinases; JAC85A2161 / Adenine
  • [Keywords] NOTNLM ; AHK3 and CRE1/AHK4 bacterial receptor assay / C8-substituted cytokinin / Cytokinin bioassay / Organic synthesis
  •  go-up   go-down


15. Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, Lozano E, Alba MA, Segarra M, Espígol-Frigolé G, Prieto-González S, Hernández-Rodríguez J, Preciado S, Lavilla R, Cid MC: Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis; 2017 Jun 12;
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis.
  • BACKGROUND: Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA).
  • In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ET<sub>B</sub>R), were expressed by both mononuclear cells and VSMC.
  • ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration.
  • Consistently, ET-1 receptor A and ET<sub>B</sub>R antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
  • (PMID = 28606962.001).
  • [ISSN] 1468-2060
  • [Journal-full-title] Annals of the rheumatic diseases
  • [ISO-abbreviation] Ann. Rheum. Dis.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; 5-bisphosphate 3-kinase (PI3K) / Giant-cell arteritis / Src kinase / cell migration / endothelin / extracellular signal -regulated kinase / focal adhesion kinase / matrix metaloproteinases. Heterotrimeric G proteins. / myofibroblast / phosphatidylinositol-4 / vascular inflammation / vascularremodelling
  •  go-up   go-down


16. Sharma N, Bhagat S, Chundawat TS: Recent Advances in Development of GPR40 Modulators (FFA1/FFAR1): An Emerging Target for Type 2 Diabetes. Mini Rev Med Chem; 2017;17(11):947-958

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: GPR40, an orphan G-protein coupled receptor that is activated by medium and long-chain fatty acids and is highly expressed in pancreatic islets, adipose depots and the gastrointestinal tract are involved in energy source recognition, absorption, storage and/or metabolism.
  • Since its deorphanization in 2003, G-protein-coupled receptor GPR40 has emerged as a potential target for type II diabetes because it has been hypothesized to participate in the adverse effects of chronic fatty acid exposure on function of β-cell.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28117025.001).
  • [ISSN] 1875-5607
  • [Journal-full-title] Mini reviews in medicinal chemistry
  • [ISO-abbreviation] Mini Rev Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Agonists / FFA1 / FFAR1 / GPR40 / Type 2 diabetes / antagonists / insulin
  •  go-up   go-down


17. Hamark C, Berntsson RP, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G: Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. J Am Chem Soc; 2017 01 11;139(1):218-230

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The highly poisonous botulinum neurotoxins, produced by the bacterium Clostridium botulinum, act on their hosts by a high-affinity association to two receptors on neuronal cell surfaces as the first step of invasion.
  • The glycan motifs of gangliosides serve as initial coreceptors for these protein complexes, whereby a membrane protein receptor is bound.
  • We here propose that the glycan part of the ganglioside receptors mainly provides abundance and specificity, whereas the interaction with the membrane itself and protein receptor brings about the strong total binding of the toxin to the neuronal membrane.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 27958736.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Publication-type] Journal Article; Research Support, Non-U.S. Gov't
  • [Publication-country] United States
  •  go-up   go-down


18. Abdellatif K, Bakr R, Mehany A: Synthesis, EGFR inhibition and anti-cancer activity of new 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives. Anticancer Agents Med Chem; 2017 Feb 12;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • A new series of hybrid pyrazolo[3,4-d]pyrimidine scaffold with a heteroaryl moiety as pyrazole, oxadiazole, triazole or phthalimide moiety (14a-f, 16, 17, 19, 20) was synthesized and biologically evaluated for the cytotoxicity against human liver cancer cell line (HEPG-2), human breast cancer cell line (MCF-7) and human colon cancer cell line (HCT-116).
  • While the pyrazolo hybrid compounds (14a-f) showed good activity against HEPG-2, MCF-7 and HCT-116 cell lines (IC50 = 3.65 - 39.98, 1.45 - 54.19 and 2.00 - 50.6 µM respectively) in comparison with doxorubicin (IC50 = 5.66, 2.60 and 8.48 µM respectively), the triazolo derivatives (17, 19) showed considerable potency (IC50 = 22.20 - 54.61, 14.98 - 88.78, and 10.79 - 53.40 µM respectively), the oxadiazolo hybrid compound (16, IC50 = 149.91, 115.89 and 110.07 µM respectively) and phthalimido hybrid compound (20, IC50 = 96.02, 131.19 and 120.36 µM respectively) showed low potency.
  • The pyrazolo derivative (14d, IC50 = 3.65, 1.45 and 2.00 µM) was the most potent among all compounds against HEPG-2, MCF-7 and HCT-116 cell lines respectively.
  • Also, the hybrid pyrazolo[3,4-d]pyrimidine derivatives were evaluated for their inhibitory activity to epidermal growth factor receptor tyrosine kinase (EGFR-TK) and they showed a good inhibitory activity (IC50 = 8.27 - 19.03 µM).
  • With the exception of the pyrazolo derivative (14c, IC50 = 18.82 µM), the inhibitory activity against EGFR-TK was consistent with the in vitro cytotoxic activity against HEPG-2, MCF-7 and HCT-116 cell lines.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28270084.001).
  • [ISSN] 1875-5992
  • [Journal-full-title] Anti-cancer agents in medicinal chemistry
  • [ISO-abbreviation] Anticancer Agents Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; 4-d]pyrimidine / Anti-cancer activity; EGFR inhibition; pyrazolo[3
  •  go-up   go-down


19. Huang L, Wang Y, Ling X, Chaurasiya B, Yang C, Du Y, Tu J, Xiong Y, Sun C: Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydr Polym; 2017 Mar 01;159:178-187

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Pull-LA-CLNPs showed high stability against extensive dilution, high salt concentration and organic solvent.
  • Asialoglycoprotein receptor (ASGPR) competitive inhibition and intracellular distribution studies performed by flow cytometer, fluorescence microscope and confocal laser scanning microscopy (CLSM) showed that Pull-LA-NPs could be efficiently taken up by the cells via ASGPR-mediated endocytosis and mainly distributed in cytoplasm.
  • In conclusion, Pull-LA-CLNPs is a promisingly safe, biodegradable and cell-specific nano-carrier to deliver lipophilic anticancer drugs.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Elsevier Ltd. All rights reserved.
  • (PMID = 28038747.001).
  • [ISSN] 1879-1344
  • [Journal-full-title] Carbohydrate polymers
  • [ISO-abbreviation] Carbohydr Polym
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Disulfide bonds / Pullulan / Reducing sensitivity / Reversible core-crosslinking / Self-targeting
  •  go-up   go-down


20. Stedtfeld RD, Stedtfeld TM, Fader KA, Williams MR, Bhaduri P, Quensen J, Zacharewski TR, Tiedje JM, Hashsham SA: TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome. FEMS Microbiol Ecol; 2017 May 01;93(5)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist with multiple toxic health effects including immune dysfunction.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
  • [Cites] Curr Cardiol Rep. 2014 Nov;16(11):540 [25303894.001]
  • [Cites] Toxicol Appl Pharmacol. 2001 Mar 15;171(3):157-64 [11243915.001]
  • [Cites] Antimicrob Agents Chemother. 2003 Sep;47(9):3030-3 [12937021.001]
  • [Cites] Am J Gastroenterol. 2012 Oct;107(10):1452-9 [23034604.001]
  • [Cites] Infect Immun. 2009 Jun;77(6):2367-75 [19307217.001]
  • [Cites] Science. 2009 Aug 28;325(5944):1128-31 [19713526.001]
  • [Cites] FEMS Immunol Med Microbiol. 2009 Jun;56(1):80-7 [19385995.001]
  • [Cites] PLoS One. 2010 Feb 05;5(2):e9085 [20140211.001]
  • [Cites] Arch Microbiol. 2013 Jun;195(6):447-51 [23483141.001]
  • [Cites] Sci Rep. 2014 Mar 12;4:4302 [24618772.001]
  • [Cites] Nature. 2012 Aug 30;488(7413):621-6 [22914093.001]
  • [Cites] World J Gastroenterol. 2011 Feb 7;17(5):557-66 [21350704.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 1990;30:251-77 [2188570.001]
  • [Cites] Environ Health Perspect. 2015 Jul;123(7):679-88 [25768209.001]
  • [Cites] Nat Med. 2012 May;18(5):799-806 [22522562.001]
  • [Cites] Methods. 2001 Dec;25(4):402-8 [11846609.001]
  • [Cites] Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 [16033867.001]
  • [Cites] Antimicrob Agents Chemother. 2000 Jun;44(6):1479-84 [10817696.001]
  • [Cites] Nature. 2006 Dec 21;444(7122):1027-31 [17183312.001]
  • [Cites] PLoS One. 2011;6(6):e21644 [21738748.001]
  • [Cites] Sci Rep. 2016 Oct 21;6:35790 [27767072.001]
  • [Cites] Environ Sci Technol. 2016 Dec 6;50(23 ):12621-12629 [27797533.001]
  • [Cites] Biochem Pharmacol. 2016 Sep 1;115:134-43 [27301797.001]
  • [Cites] J Pediatr Gastroenterol Nutr. 2004 Apr;38(4):414-21 [15085020.001]
  • [Cites] Toxicol Appl Pharmacol. 2016 Aug 1;304:48-58 [27221631.001]
  • [Cites] Bioinformatics. 2011 Aug 15;27(16):2194-200 [21700674.001]
  • [Cites] PLoS One. 2015 Jul 21;10(7):e0133492 [26197475.001]
  • [Cites] Appl Environ Microbiol. 1995 Sep;61(9):3202-7 [7574628.001]
  • [Cites] Cell Host Microbe. 2013 Nov 13;14(5):571-81 [24237702.001]
  • [Cites] Cell Host Microbe. 2007 Aug 16;2(2):119-29 [18005726.001]
  • [Cites] Ann Intern Med. 2003 Sep 16;139(6):483-7 [13679325.001]
  • [Cites] Genome Res. 2012 Oct;22(10):1974-84 [22665442.001]
  • [Cites] Nat Rev Microbiol. 2006 Aug;4(8):629-36 [16845433.001]
  • [Cites] Infect Immun. 2008 Mar;76(3):907-15 [18160481.001]
  • [Cites] BMC Bioinformatics. 2012 Feb 14;13:31 [22333067.001]
  • [Cites] Infect Immun. 1975 Dec;12 (6):1319-24 [173655.001]
  • [Cites] Appl Environ Microbiol. 2016 Oct 27;82(22):6672-6681 [27613679.001]
  • [Cites] Toxicology. 2011 Apr 11;282(3):82-7 [21272611.001]
  • [Cites] Acta Paediatr. 2009 Feb;98(2):229-38 [19143664.001]
  • [Cites] JPEN J Parenter Enteral Nutr. 2013 Sep;37(5):674-82 [23243149.001]
  • [Cites] Toxicol Appl Pharmacol. 1994 Mar;125(1):7-16 [8128497.001]
  • [Cites] Science. 2005 Jun 10;308(5728):1635-8 [15831718.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74 [22232693.001]
  • [Cites] J Med Food. 2015 Apr;18(4):393-402 [25692333.001]
  • [Cites] Nucleic Acids Res. 2009 Jan;37(Database issue):D443-7 [18832362.001]
  • [Cites] Biosci Biotechnol Biochem. 2003 Jan;67(1):89-93 [12619678.001]
  • [Cites] Sci Transl Med. 2009 Nov 11;1(6):6ra14 [20368178.001]
  • [Cites] Nature. 2011 Oct 30;480(7376):241-4 [22037308.001]
  • [Cites] Environ Sci Technol. 2014 Aug 19;48(16):9079-85 [25057898.001]
  • [Cites] MBio. 2013 Sep 17;4(5):e00592-13 [24045641.001]
  • [Cites] Toxicol Sci. 2015 Dec;148(2):567-80 [26377647.001]
  • [Cites] PLoS One. 2011;6(6):e20749 [21694778.001]
  • [Cites] J Immunol. 2008 Aug 15;181(4):2382-91 [18684927.001]
  • [Cites] J Med Food. 2015 Jan;18(1):11-20 [25562618.001]
  • [Cites] Science. 2013 Feb 8;339(6120):708-11 [23393266.001]
  • [Cites] FEMS Microbiol Lett. 2005 Feb 1;243(1):141-7 [15668012.001]
  • [Cites] Microbiome. 2015 Aug 05;3:32 [26246894.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3435-40 [23401528.001]
  • [Cites] Infect Immun. 2008 Oct;76(10):4726-36 [18678663.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1691-6 [22307632.001]
  • [Cites] Trends Microbiol. 2006 Apr;14(4):176-82 [16537105.001]
  • [Cites] Environ Toxicol Chem. 2017 Apr 1;:null [28370362.001]
  • [Cites] PLoS One. 2009;4(4):e5063 [19357791.001]
  • [Cites] Front Immunol. 2015 May 13;6:226 [26029211.001]
  • (PMID = 28475713.001).
  • [ISSN] 1574-6941
  • [Journal-full-title] FEMS microbiology ecology
  • [ISO-abbreviation] FEMS Microbiol. Ecol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; TCDD / antibiotic resistance genes (ARGs) / gut microbiome / persistent organic pollutant, immune-suppression, mobile genetic elements, dysbiosis, Enterobacteriaceae
  •  go-up   go-down


21. Ranalli A, Santi M, Capriotti L, Voliani V, Porciani D, Beltram F, Signore G: Peptide-Based Stealth Nanoparticles for Targeted and pH-Triggered Delivery. Bioconjug Chem; 2017 Feb 15;28(2):627-635
Hazardous Substances Data Bank. DOXORUBICIN .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Therefore, there is an increasing interest in developing biocompatible, non-PEGylated organic nanostructures able to perform targeted delivery to increase the efficacy of liposomal technology.
  • Upon derivatization with an anti-transferrin receptor aptamer, these vesicles show highly selective cellular internalization with minimal nonspecific uptake and pH-triggered doxorubicin release.
  • [MeSH-minor] Cell Line, Tumor. Cell Survival / drug effects. Drug Delivery Systems. Humans. Models, Molecular. Neoplasms / drug therapy. Polyethylene Glycols / chemistry

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28107619.001).
  • [ISSN] 1520-4812
  • [Journal-full-title] Bioconjugate chemistry
  • [ISO-abbreviation] Bioconjug. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Delayed-Action Preparations; 0 / Liposomes; 0 / Peptides; 30IQX730WE / Polyethylene Glycols; 80168379AG / Doxorubicin
  •  go-up   go-down


22. Hellmuth I, Freund I, Schlöder J, Seidu-Larry S, Thüring K, Slama K, Langhanki J, Kaloyanova S, Eigenbrod T, Krumb M, Röhm S, Peneva K, Opatz T, Jonuleit H, Dalpke AH, Helm M: Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Front Immunol; 2017;8:312

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7.
  • Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Med Chem. 2012 Feb 9;55(3):1106-16 [22239408.001]
  • [Cites] Front Immunol. 2013 Apr 03;4:82 [23565116.001]
  • [Cites] J Immunol. 2005 Mar 1;174(5):3087-97 [15728524.001]
  • [Cites] Nat Med. 2005 Mar;11(3):263-70 [15723075.001]
  • [Cites] Bioconjug Chem. 2015 Aug 19;26(8):1713-23 [26193334.001]
  • [Cites] J Biol Chem. 2004 Mar 26;279(13):12542-50 [14729660.001]
  • [Cites] Bioorg Med Chem Lett. 2013 Feb 1;23(3):669-72 [23265901.001]
  • [Cites] Nat Struct Mol Biol. 2008 Jul;15(7):761-3 [18568036.001]
  • [Cites] J Immunol. 2005 Feb 1;174(3):1259-68 [15661881.001]
  • [Cites] Eur J Immunol. 2006 Jul;36(7):1815-26 [16783850.001]
  • [Cites] Nat Struct Mol Biol. 2015 Feb;22(2):109-15 [25599397.001]
  • [Cites] Bioorg Med Chem Lett. 2011 Oct 1;21(19):5939-43 [21885277.001]
  • [Cites] Eur J Immunol. 2009 Sep;39(9):2537-47 [19662634.001]
  • [Cites] Science. 2008 Apr 18;320(5874):379-81 [18420935.001]
  • [Cites] Science. 2004 Mar 5;303(5663):1526-9 [14976262.001]
  • [Cites] Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2284-8 [21351337.001]
  • [Cites] Science. 2013 Feb 15;339(6121):786-91 [23258413.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5598-603 [15034168.001]
  • [Cites] Nat Rev Immunol. 2015 Sep 15;15(9):529-44 [26292638.001]
  • [Cites] ACS Cent Sci. 2015 Nov 25;1(8):439-448 [26640818.001]
  • [Cites] Science. 2012 Aug 31;337(6098):1111-5 [22821982.001]
  • [Cites] Nat Struct Mol Biol. 2015 Oct;22(10):782-7 [26323037.001]
  • [Cites] J Exp Med. 2012 Feb 13;209(2):235-41 [22312111.001]
  • [Cites] Nature. 2006 May 4;441(7089):101-5 [16625202.001]
  • [Cites] Mol Ther. 2006 Mar;13(3):494-505 [16343994.001]
  • [Cites] Immunity. 2015 Jul 21;43(1):41-51 [26187414.001]
  • [Cites] Nat Immunol. 2002 Feb;3(2):196-200 [11812998.001]
  • [Cites] Nat Immunol. 2004 Jul;5(7):730-7 [15208624.001]
  • [Cites] Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):3680-5 [25775551.001]
  • [Cites] Science. 2006 Nov 10;314(5801):994-7 [17038590.001]
  • [Cites] RNA Biol. 2012 Jun;9(6):828-42 [22617878.001]
  • [Cites] Science. 2016 Jun 17;352(6292):1417-20 [27313039.001]
  • [Cites] J Immunol. 2008 Mar 1;180(5):3229-37 [18292547.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(52):9879-83 [19943299.001]
  • [Cites] RNA. 2014 Sep;20(9):1351-5 [25051971.001]
  • [Cites] J Innate Immun. 2015;7(5):482-93 [25823462.001]
  • [Cites] Immunity. 2016 Oct 18;45(4):737-748 [27742543.001]
  • [Cites] Nat Immunol. 2002 Jun;3(6):499 [12032557.001]
  • [Cites] J Immunol. 2002 May 1;168(9):4531-7 [11970999.001]
  • [Cites] Biotechniques. 2007 Aug;43(2):222-7 [17824390.001]
  • [Cites] Nature. 2009 Mar 26;458(7237):514-8 [19158675.001]
  • [Cites] J Immunol. 2006 Dec 1;177(11):8164-70 [17114492.001]
  • [Cites] Science. 2004 Mar 5;303(5663):1529-31 [14976261.001]
  • [Cites] Nat Immunol. 2009 Mar;10(3):266-72 [19158679.001]
  • [Cites] Nat Rev Drug Discov. 2014 Oct;13(10):759-80 [25233993.001]
  • [Cites] Nat Rev Immunol. 2012 Jun 22;12(7):479-91 [22728526.001]
  • [Cites] Nat Biotechnol. 2015 Nov;33(11):1201-10 [26501954.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15779-84 [18840688.001]
  • [Cites] Methods. 2016 Sep 1;107:48-56 [27020891.001]
  • [Cites] Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8098-103 [27382168.001]
  • [Cites] J Biol Chem. 1990 Jul 15;265(20):11960-6 [2164022.001]
  • [Cites] Mol Biol Rep. 1993 Apr;17(3):167-83 [8326953.001]
  • [Cites] Blood. 2011 May 26;117(21):5683-91 [21487111.001]
  • [Cites] Nature. 2009 Mar 26;458(7237):509-13 [19158676.001]
  • [Cites] Nat Biotechnol. 2005 Apr;23(4):457-62 [15778705.001]
  • [Cites] J Am Chem Soc. 2014 Dec 10;136(49):16958-61 [25434769.001]
  • [Cites] J Immunother. 2011 Jan;34(1):1-15 [21150709.001]
  • [Cites] Front Cell Infect Microbiol. 2013 Jul 30;3:37 [23908972.001]
  • [Cites] J Biol Chem. 1981 Oct 10;256(19):10054-60 [7275966.001]
  • [Cites] J Exp Med. 2012 Feb 13;209(2):225-33 [22312113.001]
  • [Cites] J Immunol. 2014 Jun 15;192(12):5963-73 [24813206.001]
  • [Cites] Nature. 2013 Jun 20;498(7454):380-4 [23722158.001]
  • [Cites] J Med Chem. 2010 Jun 10;53(11):4450-65 [20481492.001]
  • [Cites] Eur J Immunol. 1997 Dec;27(12):3135-42 [9464798.001]
  • [Cites] Elife. 2012 Oct 30;1:e00102 [23110254.001]
  • [Cites] J Immunol. 2011 Apr 15;186(8):4794-804 [21398612.001]
  • [Cites] J Immunol. 2015 Jul 15;195(2):411-8 [26138638.001]
  • [Cites] Curr Opin Immunol. 2008 Aug;20(4):389-95 [18652893.001]
  • [Cites] Immunity. 2005 Aug;23(2):165-75 [16111635.001]
  • [Cites] J Immunol. 2012 Sep 15;189(6):2717-21 [22896636.001]
  • [Cites] J Virol. 2015 Mar;89(6):3221-35 [25568203.001]
  • [Cites] Br J Clin Pharmacol. 2016 Sep;82(3):659-72 [27111518.001]
  • [Cites] Science. 2009 Feb 20;323(5917):1057-60 [19131592.001]
  • [Cites] Chem Commun (Camb). 2012 Nov 18;48(89):11014-6 [23037931.001]
  • (PMID = 28392787.001).
  • [Journal-full-title] Frontiers in immunology
  • [ISO-abbreviation] Front Immunol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; bioconjugate / click chemistry / immunostimulation / mRNA / siRNA / small molecules / toll-like receptor
  •  go-up   go-down


23. Mitchell RF, Hall LP, Reagel PF, McKenna DD, Baker TC, Hildebrand JG: Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb;203(2):99-109

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Traps baited with an attractive mixture of volatile organic compounds from hosts have been of limited success in monitoring invasion sites.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Chem Senses. 1995 Jun;20(3):313-23 [7552040.001]
  • [Cites] Naturwissenschaften. 2010 Dec;97(12 ):1059-66 [20972770.001]
  • [Cites] Biol Lett. 2014 Apr 23;10(4):20140096 [24759369.001]
  • [Cites] PLoS One. 2010 Mar 10;5(3):e9490 [20224823.001]
  • [Cites] PLoS One. 2016 Jan 22;11(1):e0147144 [26800515.001]
  • [Cites] J Neurosci. 2005 Aug 31;25(35):8017-26 [16135759.001]
  • [Cites] Nat Neurosci. 1999 May;2(5):473-8 [10321253.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):E1321-9 [23509267.001]
  • [Cites] Chem Senses. 2011 Jul;36(6):497-8 [21441366.001]
  • [Cites] Annu Rev Entomol. 1989;34:477-501 [2648971.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14383-8 [17761794.001]
  • [Cites] BMC Neurosci. 2012 Jan 03;13:1-17 [22214384.001]
  • [Cites] J Microsc. 2005 Apr;218(Pt 1):52-61 [15817063.001]
  • [Cites] J Chem Ecol. 2014 Dec;40(11-12):1241-50 [25432666.001]
  • [Cites] BMC Genomics. 2013 Mar 21;14:198 [23517120.001]
  • [Cites] Insect Biochem Mol Biol. 2008 Apr;38(4):387-97 [18342245.001]
  • [Cites] Insect Biochem Mol Biol. 2012 Jul;42(7):499-505 [22504490.001]
  • [Cites] Neuron. 2006 Mar 16;49(6):833-44 [16543132.001]
  • [Cites] BMC Genomics. 2016 Jan 22;17 :69 [26800671.001]
  • [Cites] Curr Biol. 2005 Sep 6;15(17):1535-47 [16139208.001]
  • [Cites] Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [15034147.001]
  • [Cites] Annu Rev Neurosci. 2007;30:505-33 [17506643.001]
  • [Cites] Genome Res. 2008 Jan;18(1):188-96 [18025269.001]
  • [Cites] PLoS One. 2015 Apr 09;10(4):e0121504 [25856077.001]
  • [Cites] J Comp Physiol A. 1987 Jun;161(1):23-32 [3039128.001]
  • [Cites] Front Syst Neurosci. 2010 Mar 03;4:3 [20339482.001]
  • [Cites] Elife. 2014 Mar 26;3:e02115 [24670956.001]
  • [Cites] J Chem Ecol. 2008 Mar;34(3):408-17 [18253798.001]
  • [Cites] Environ Entomol. 2016 Feb;45(1):223-8 [26590160.001]
  • [Cites] Environ Entomol. 2010 Feb;39(1):169-76 [20146854.001]
  • [Cites] Chem Senses. 2000 Apr;25(2):119-29 [10781018.001]
  • [Cites] Annu Rev Entomol. 2010;55:521-46 [19743916.001]
  • [Cites] Curr Biol. 2016 May 23;26(10 ):1352-8 [27161501.001]
  • [Cites] Prog Neurobiol. 2011 Nov;95(3):427-47 [21963552.001]
  • [Cites] Cell. 2009 Jan 9;136(1):149-62 [19135896.001]
  • [Cites] Arthropod Struct Dev. 2007 Mar;36(1):23-39 [18089085.001]
  • [Cites] Environ Entomol. 2014 Aug;43(4):1034-44 [24960252.001]
  • [Cites] Environ Entomol. 2012 Dec;41(6):1587-96 [23321107.001]
  • [Cites] Annu Rev Entomol. 2013;58:373-91 [23020622.001]
  • [Cites] Nature. 2008 Mar 27;452(7186):473-7 [18305480.001]
  • [Cites] Curr Biol. 2006 Jan 10;16(1):101-9 [16401429.001]
  • [Cites] Curr Biol. 2005 Sep 6;15(17):1548-53 [16139209.001]
  • [Cites] Environ Entomol. 2014 Oct;43(5):1379-88 [25259696.001]
  • [Cites] Neuron. 2005 Mar 3;45(5):661-6 [15748842.001]
  • [Cites] Genome Biol. 2016 Nov 11;17 (1):227 [27832824.001]
  • [Cites] J Econ Entomol. 2014 Feb;107(1):259-67 [24665709.001]
  • [Cites] J Chem Ecol. 2014 Feb;40(2):169-80 [24510414.001]
  • [Cites] Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [9254694.001]
  • (PMID = 28078425.001).
  • [ISSN] 1432-1351
  • [Journal-full-title] Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
  • [ISO-abbreviation] J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
  • [Language] eng
  • [Grant] United States / NIGMS NIH HHS / GM / K12 GM000708
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; Anoplophora glabripennis / Antennal lobe morphology / Cerambycidae / Olfactory receptor / Pheromone
  •  go-up   go-down


24. Vasaturo M, Fiengo L, De Tommasi N, Sabatino L, Ziccardi P, Colantuoni V, Bruno M, Cerchia C, Novellino E, Lupo A, Lavecchia A, Piaz FD: A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability. Sci Rep; 2017 Jan 24;7:41273
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1).
  • We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments.
  • 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28117438.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


25. Robinson RK, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Shaffer MSP, Bonvini SJ, Maher SA, Mudway IS, Porter AE, Carlsten C, Tetley TD, Belvisi MG: Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol; 2017 May 19;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine.
  • Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
  • (PMID = 28532657.001).
  • [ISSN] 1097-6825
  • [Journal-full-title] The Journal of allergy and clinical immunology
  • [ISO-abbreviation] J. Allergy Clin. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Pollution / oxidative stress / sensory nerves / transient receptor potential ion channels / vagus
  •  go-up   go-down


26. Mahmoud S, Planes MD, Cabedo M, Trujillo C, Rienzo A, Caballero-Molada M, Sharma SC, Montesinos C, Mulet JM, Serrano R: TOR complex 1 regulates the yeast plasma membrane proton pump and pH and potassium homeostasis. FEBS Lett; 2017 Jul;591(13):1993-2002

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H<sup>+</sup> -ATPase Pma1 (which drives nutrient and K<sup>+</sup> uptake and regulates pH homeostasis).
  • Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector.
  • Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K<sup>+</sup> uptake, intracellular pH, cell growth, and tolerance to weak organic acids.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 Federation of European Biochemical Societies.
  • (PMID = 28486745.001).
  • [ISSN] 1873-3468
  • [Journal-full-title] FEBS letters
  • [ISO-abbreviation] FEBS Lett.
  • [Language] eng
  • [Publication-type] Letter
  • [Publication-country] England
  • [Keywords] NOTNLM ; H+-ATPase / K+ transport / Sit4 / intracellular pH
  •  go-up   go-down


27. Pille J, van Lith SA, van Hest JC, Leenders WP: Self-Assembling VHH-Elastin-Like Peptides for Photodynamic Nanomedicine. Biomacromolecules; 2017 Apr 10;18(4):1302-1310
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • 7D12, a VHH against the epidermal growth factor receptor (EGFR) that is overexpressed in various cancers, has been evaluated as an effective cancer-targeting VHH in multiple studies.
  • We present proof of concept of the usability of such particles by controlled incorporation of a photosensitizer and show that the resulting nanoparticles induce EGFR-specific light-induced cell killing.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Annu Rev Biochem. 2013;82:775-97 [23495938.001]
  • [Cites] Int J Cancer. 2011 Oct 15;129(8):2013-24 [21520037.001]
  • [Cites] J Neurochem. 2005 Nov;95(4):1201-14 [16271053.001]
  • [Cites] Structure. 2013 Jul 2;21(7):1214-24 [23791944.001]
  • [Cites] J Biomed Biotechnol. 2010;2010:274346 [20414351.001]
  • [Cites] Nanoscale Res Lett. 2014 Sep 26;9(1):528 [25328501.001]
  • [Cites] Cancer Immunol Immunother. 2007 Mar;56(3):303-317 [16738850.001]
  • [Cites] Z Naturforsch C. 2003 Nov-Dec;58(11-12):873-8 [14713168.001]
  • [Cites] Adv Healthc Mater. 2013 Jul;2(7):1045-55 [23441099.001]
  • [Cites] Biomacromolecules. 2014 Oct 13;15(10):3522-30 [25142785.001]
  • [Cites] Biopolymers. 1992 Sep;32(9):1243-50 [1420991.001]
  • [Cites] Vet Immunol Immunopathol. 2009 Mar 15;128(1-3):178-83 [19026455.001]
  • [Cites] Med Microbiol Immunol. 2009 Aug;198(3):157-74 [19529959.001]
  • [Cites] ACS Nano. 2011 Jun 28;5(6):4319-28 [21609027.001]
  • [Cites] Biophys J. 2011 May 4;100(9):2309-17 [21539801.001]
  • [Cites] Biomacromolecules. 2013 Aug 12;14(8):2866-72 [23808597.001]
  • [Cites] J Control Release. 2016 May 10;229:93-105 [26988602.001]
  • [Cites] Langmuir. 2014 Apr 1;30(12):3432-40 [24611880.001]
  • [Cites] Int J Mol Sci. 2011;12(5):2808-21 [21686152.001]
  • [Cites] Biomacromolecules. 2010 Apr 12;11(4):944-52 [20184309.001]
  • [Cites] Biomacromolecules. 2014 Jul 14;15(7):2751-9 [24945908.001]
  • [Cites] Analyst. 2011 Feb 7;136(3):515-9 [21109889.001]
  • [Cites] Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247-51 [2682640.001]
  • [Cites] J Control Release. 2015 Jan 10;197:190-8 [25445702.001]
  • [Cites] Phys Chem Chem Phys. 2015 Oct 14;17(38):25250-9 [26353083.001]
  • [Cites] Lasers Surg Med. 2002;31(4):289-93 [12355576.001]
  • [Cites] J Control Release. 2012 Apr 30;159(2):281-9 [22227023.001]
  • [Cites] J Biol Chem. 2011 Apr 1;286(13):11211-7 [21282104.001]
  • (PMID = 28269985.001).
  • [ISSN] 1526-4602
  • [Journal-full-title] Biomacromolecules
  • [ISO-abbreviation] Biomacromolecules
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


28. Zhang Y, Guo X, Zheng M, Yang R, Yang H, Jia L, Yang M: A 4,5-quinolimide-based fluorescent sensor for the turn-on detection of Cd&lt;sup&gt;2+&lt;/sup&gt; with live-cell imaging. Org Biomol Chem; 2017 Feb 21;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] A 4,5-quinolimide-based fluorescent sensor for the turn-on detection of Cd<sup>2+</sup> with live-cell imaging.
  • : A 4,5-quinolimide derivative, BNA, bearing the amide-DPA receptor, was synthesized as a turn-on fluorescent sensor for Cd<sup>2+</sup>.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28221392.001).
  • [ISSN] 1477-0539
  • [Journal-full-title] Organic & biomolecular chemistry
  • [ISO-abbreviation] Org. Biomol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


29. Hirota Y, Nakagawa K, Mimatsu S, Sawada N, Sakaki T, Kubodera N, Kamao M, Tsugawa N, Suhara Y, Okano T: Nongenomic effects of 1α,25-dihydroxyvitamin D&lt;sub&gt;3&lt;/sub&gt; on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice. Biochem Biophys Res Commun; 2017 Jan 29;483(1):359-365
Hazardous Substances Data Bank. PHOSPHORUS, ELEMENTAL .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The active form of vitamin D, 1α,25-dihydroxyvitamin D<sub>3</sub> (1α,25D<sub>3</sub>), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR).
  • [MeSH-minor] Alopecia / genetics. Animals. Body Weight. Calcium / blood. Calcium / metabolism. Cell Differentiation. Cell Proliferation. Chondrocytes / cytology. Female. Femur / metabolism. Male. Mice. Mice, Knockout. Osteogenesis. Osteoporosis / metabolism. Parathyroid Hormone / metabolism. Phenotype. Phosphorus / metabolism. Real-Time Polymerase Chain Reaction

  • Hazardous Substances Data Bank. 1,25-DIHYDROXYCHOLECALCIFEROL .
  • Hazardous Substances Data Bank. CALCIUM, ELEMENTAL .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
  • (PMID = 28025137.001).
  • [ISSN] 1090-2104
  • [Journal-full-title] Biochemical and biophysical research communications
  • [ISO-abbreviation] Biochem. Biophys. Res. Commun.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Parathyroid Hormone; 0 / Receptors, Calcitriol; 142508-67-6 / 1 alpha-(hydroxymethyl)-25-hydroxyvitamin D3; 27YLU75U4W / Phosphorus; EC 1.14.13.13 / 25-Hydroxyvitamin D3 1-alpha-Hydroxylase; FXC9231JVH / Calcitriol; SY7Q814VUP / Calcium
  • [Keywords] NOTNLM ; Bone remodeling / CYP27B1 / Genomic action / Knockout mice / VDR / Vitamin D
  •  go-up   go-down


30. Kobayashi T, Koizumi T, Kobayashi M, Ogura J, Horiuchi Y, Kimura Y, Kondo A, Furugen A, Narumi K, Takahashi N, Iseki K: Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2. Drug Metab Pharmacokinet; 2017 Apr;32(2):157-163
Hazardous Substances Data Bank. TAUROCHOLIC ACID .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Insulin stimulates transport of organic anion compounds mediated by organic anion transporting polypeptide 2B1 in the human intestinal cell line Caco-2.
  • Organic anion transporting polypeptide 2B1 (OATP2B1) is the major uptake transporter in the intestine, and transports various clinically used therapeutic agents.
  • Insulin acts through the insulin receptor in targeted cells, and Rab8A is one of the insulin signaling pathways.
  • The small intestine in humans also expresses insulin receptor and Rab8A.
  • Caco-2 cells treated with insulin showed increased OATP2B1 expression at the cell surface.
  • [MeSH-major] Insulin / pharmacology. Organic Anion Transporters / metabolism

  • MedlinePlus Health Information. consumer health - Diabetes Medicines.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
  • (PMID = 28318878.001).
  • [ISSN] 1880-0920
  • [Journal-full-title] Drug metabolism and pharmacokinetics
  • [ISO-abbreviation] Drug Metab. Pharmacokinet.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] 0 / Insulin; 0 / Organic Anion Transporters; 0 / SLCO2B1 protein, human; 5E090O0G3Z / Taurocholic Acid
  • [Keywords] NOTNLM ; Caco-2 cell / Estrone-3-sulfate / Insulin / Intestinal absorption / OATP2B1
  •  go-up   go-down


31. Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F, Martí-Solano M, Manna M, Martinez-Seara H, Hildebrand PW, Martín M, Selent J: Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun; 2017 Feb 21;8:14505

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Membrane cholesterol access into a G-protein-coupled receptor.
  • Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs).
  • Crystal structures of prototypical GPCRs such as the adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid.
  • We confirm the presence of cholesterol inside the receptor by chemical modification of the A<sub>2A</sub>R interior in a biotinylation assay.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Chem Biol. 2012 Jan 08;8(2):211-20 [22231273.001]
  • [Cites] Science. 2014 Apr 4;344(6179):58-64 [24603153.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5247-52 [22431612.001]
  • [Cites] PLoS One. 2009;4(2):e4382 [19194506.001]
  • [Cites] Biochemistry. 1990 Oct 2;29(39):9143-9 [2271584.001]
  • [Cites] Angew Chem Int Ed Engl. 2013 Oct 11;52(42):11021-4 [24038729.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3463-72 [23151510.001]
  • [Cites] J Biol Chem. 2002 Jun 7;277(23):20139-45 [11889130.001]
  • [Cites] Biochem Pharmacol. 2007 Jul 15;74(2):236-55 [17521619.001]
  • [Cites] Science. 2008 Nov 21;322(5905):1211-7 [18832607.001]
  • [Cites] J Mol Biol. 2009 Oct 2;392(4):1102-15 [19665031.001]
  • [Cites] Methods Mol Biol. 2008;426:145-59 [18542861.001]
  • [Cites] Nature. 2008 Jul 10;454(7201):183-7 [18563085.001]
  • [Cites] Nature. 2016 Jul 28;535(7613):517-22 [27437577.001]
  • [Cites] Biochim Biophys Acta. 1996 Sep 13;1297(1):77-82 [8841383.001]
  • [Cites] Glycoconj J. 2009 Aug;26(6):711-20 [19052861.001]
  • [Cites] Neurochem Res. 2007 Jun;32(6):1056-70 [17401671.001]
  • [Cites] J Biomol Tech. 2008 Sep;19(4):258-66 [19137116.001]
  • [Cites] Biophys J. 2011 Jan 19;100(2):L11-3 [21244820.001]
  • [Cites] Phys Rev A Gen Phys. 1986 May;33(5):3628-3631 [9897103.001]
  • [Cites] J Neurosci Res. 2005 Jul 15;81(2):275-83 [15920744.001]
  • [Cites] J Phys Chem B. 2010 Jun 17;114(23):7830-43 [20496934.001]
  • [Cites] Nat Chem Biol. 2016 Jan;12 (1):35-9 [26571351.001]
  • [Cites] Science. 2007 Nov 23;318(5854):1258-65 [17962520.001]
  • [Cites] J Biol Chem. 2012 Oct 12;287(42):35470-83 [22875855.001]
  • [Cites] Biol Psychiatry. 2007 Jul 1;62(1):17-24 [17188654.001]
  • [Cites] J Biol Chem. 1990 Dec 5;265(34):20727-30 [2174424.001]
  • [Cites] Sci Rep. 2016 Jun 23;6:28534 [27334845.001]
  • [Cites] Biochem Pharmacol. 2007 Feb 15;73(4):534-49 [17141202.001]
  • [Cites] Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10355-9 [7937955.001]
  • [Cites] Prog Neurobiol. 2007 Dec;83(5):293-309 [17826884.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14418-23 [18768796.001]
  • [Cites] Curr Pharm Des. 2008;14(15):1512-24 [18537674.001]
  • [Cites] J Biol Chem. 2005 Jan 21;280(3):2176-85 [15537636.001]
  • [Cites] J Biol Chem. 2010 Jun 4;285(23 ):17954-64 [20220143.001]
  • [Cites] Mol Med. 2011 Sep-Oct;17 (9-10):1107-18 [21717034.001]
  • [Cites] Structure. 2009 Dec 9;17(12):1660-8 [20004169.001]
  • [Cites] Eur J Pharmacol. 2009 Mar 15;606(1-3):50-60 [19374848.001]
  • [Cites] Brain Res Mol Brain Res. 2002 Feb 28;99(1):54-66 [11869809.001]
  • [Cites] J Psychiatr Res. 2013 May;47(5):636-43 [23428160.001]
  • [Cites] BMC Bioinformatics. 2006 Jun 22;7:316 [16792811.001]
  • [Cites] Schizophr Res. 2007 Mar;91(1-3):37-50 [17236749.001]
  • [Cites] J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [8744570.001]
  • [Cites] Nat Commun. 2014 Sep 10;5:4801 [25205354.001]
  • [Cites] J Phys Chem B. 1998 Apr 30;102(18):3586-616 [24889800.001]
  • [Cites] Science. 2012 Jul 13;337(6091):232-6 [22798613.001]
  • [Cites] Sci Rep. 2016 Jan 22;6:19839 [26796668.001]
  • [Cites] J Immunol. 2002 Apr 15;168(8):4121-6 [11937572.001]
  • [Cites] Biochemistry. 1997 Sep 9;36(36):10959-74 [9283088.001]
  • [Cites] Exp Cell Res. 2003 Nov 15;291(1):36-45 [14597406.001]
  • [Cites] Chem Phys Lipids. 2016 Sep;199:61-73 [27108066.001]
  • [Cites] Bioinformatics. 2012 Aug 15;28(16):2193-4 [22730430.001]
  • [Cites] Curr Opin Struct Biol. 2011 Dec;21(6):802-7 [22036833.001]
  • [Cites] Science. 2012 Feb 17;335(6070):851-5 [22344443.001]
  • [Cites] J Pharmacol Exp Ther. 2006 Jun;317(3):1295-306 [16505160.001]
  • [Cites] Pharmacol Rev. 2013 Dec 11;66(1):102-92 [24335194.001]
  • [Cites] J Alzheimers Dis. 2010;19(2):489-502 [20110596.001]
  • [Cites] CNS Neurol Disord Drug Targets. 2012 Sep;11(6):664-74 [22963436.001]
  • [Cites] Psychiatry Res. 2008 Sep 30;160(3):285-99 [18715653.001]
  • [Cites] J Am Chem Soc. 2012 Oct 10;134(40):16512-5 [23005256.001]
  • [Cites] J Chem Theory Comput. 2009 Jun 9;5(6):1632-9 [26609855.001]
  • [Cites] J Phys Chem B. 2012 Jan 12;116(1):203-10 [22136112.001]
  • [Cites] Mol Pharmacol. 2009 Jan;75(1):1-12 [18945819.001]
  • [Cites] J Chromatogr A. 2010 Jun 18;1217(25):4087-99 [20307888.001]
  • [Cites] Cell Signal. 2014 Dec;26(12):2614-20 [25152366.001]
  • [Cites] Biophys J. 2009 Jul 8;97(1):50-8 [19580743.001]
  • [Cites] J Phys Chem B. 2010 Sep 23;114(37):12046-57 [20804205.001]
  • [Cites] Subcell Biochem. 2010;51:439-66 [20213554.001]
  • [Cites] Protein Sci. 2014 Jan;23(1):1-22 [24155031.001]
  • [Cites] Cardiovasc Res. 2013 Mar 15;97(4):642-52 [23241314.001]
  • [Cites] Structure. 2008 Jun;16(6):897-905 [18547522.001]
  • (PMID = 28220900.001).
  • [ISSN] 2041-1723
  • [Journal-full-title] Nature communications
  • [ISO-abbreviation] Nat Commun
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


32. Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI: Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem Biol; 2017 Jun 09;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Chemical Tools for Studying TLR Signaling Dynamics.
  • The detection of infectious pathogens is essential for the induction of antimicrobial immune responses.
  • The innate immune system detects a wide array of microbes using a limited set of pattern-recognition receptors (PRRs).
  • One family of PRRs with a central role in innate immunity are the Toll-like receptors (TLRs).
  • Upon ligation, these receptors initiate signaling pathways culminating in the release of pro-inflammatory cytokines and/or type I interferons (IFN-I).
  • In recent years, it has become evident that the specific subcellular location and timing of TLR activation affect signaling outcome.
  • The subtlety of this signaling has led to a growing demand for chemical tools that provide the ability to conditionally control TLR activation.
  • In this review, we survey current models for TLR signaling in time and space, discuss how chemical tools have contributed to our understanding of TLR ligands, and describe how they can aid further elucidation of the dynamic aspects of TLR signaling.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Ltd. All rights reserved.
  • (PMID = 28648377.001).
  • [ISSN] 2451-9456
  • [Journal-full-title] Cell chemical biology
  • [ISO-abbreviation] Cell Chem Biol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Toll-like receptor / innate immunity / photo-deprotection / signaling dynamics
  •  go-up   go-down


33. Stevens MY, Chow SY, Estrada S, Eriksson J, Asplund V, Orlova A, Mitran B, Antoni G, Larhed M, Åberg O, Odell LR: Synthesis of &lt;sup&gt;11&lt;/sup&gt;C-labeled Sulfonyl Carbamates through a Multicomponent Reaction Employing Sulfonyl Azides, Alcohols, and [&lt;sup&gt;11&lt;/sup&gt;C]CO. ChemistryOpen; 2016 Dec;5(6):566-573

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The target compound was obtained in 24±10 % isolated radiochemical yield and was evaluated for binding properties in a tumor cell assay; in vivo biodistribution and imaging studies were also performed.
  • This represents the first successful radiolabeling of a non-peptide angiotensin II receptor subtype 2 agonist, C21, currently in clinical trials for the treatment of idiopathic pulmonary fibrosis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28032026.001).
  • [Journal-full-title] ChemistryOpen
  • [ISO-abbreviation] ChemistryOpen
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; AT2R agonists / multicomponent reactions / radiochemistry / sulfonyl azides / sulfonyl carbamates
  •  go-up   go-down


34. Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW: Development of a human vasopressin V&lt;sub&gt;1a&lt;/sub&gt;-receptor antagonist from an evolutionary-related insect neuropeptide. Sci Rep; 2017 Feb 01;7:41002

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Development of a human vasopressin V<sub>1a</sub>-receptor antagonist from an evolutionary-related insect neuropeptide.
  • We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors.
  • The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity.
  • These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Ann N Y Acad Sci. 1997 May 30;812:218-21 [9186749.001]
  • [Cites] Mol Pharmacol. 2003 Jun;63(6):1256-72 [12761335.001]
  • [Cites] Br J Pharmacol. 2006 Jan;147 Suppl 1:S27-37 [16402114.001]
  • [Cites] Biochem Biophys Res Commun. 1976 Nov 22;73(2):336-42 [999714.001]
  • [Cites] CNS Neurol Disord Drug Targets. 2006 Apr;5(2):167-79 [16611090.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21183-8 [24248349.001]
  • [Cites] Br J Clin Pharmacol. 2004 Oct;58(4):352-8 [15373927.001]
  • [Cites] ACS Chem Neurosci. 2013 Jul 17;4(7):1026-48 [23659787.001]
  • [Cites] Peptides. 1995;16(6):1141-7 [8532599.001]
  • [Cites] Insect Biochem Mol Biol. 2008 Apr;38(4):380-6 [18342244.001]
  • [Cites] Database (Oxford). 2011 Mar 29;2011:bar009 [21447597.001]
  • [Cites] Nature. 2009 May 21;459(7245):356-63 [19458711.001]
  • [Cites] Nature. 2015 Mar 12;519(7542):247-50 [25533960.001]
  • [Cites] Mol Biol Evol. 2013 Apr;30(4):772-80 [23329690.001]
  • [Cites] Mol Endocrinol. 2007 Feb;21(2):512-23 [17082326.001]
  • [Cites] Bioinformatics. 2012 Dec 15;28(24):3211-7 [23071270.001]
  • [Cites] J Pept Sci. 2006 Mar;12(3):180-9 [16114100.001]
  • [Cites] Prog Brain Res. 2008;170:473-512 [18655903.001]
  • [Cites] Nature. 2012 Mar 21;485(7398):321-6 [22437502.001]
  • [Cites] Nature. 2016 Feb 11;530(7589):237-41 [26840483.001]
  • [Cites] Biochem Soc Trans. 2007 Aug;35(Pt 4):737-41 [17635137.001]
  • [Cites] Brain Res. 1999 Nov 27;848(1-2):1-25 [10612694.001]
  • [Cites] Syst Biol. 2012 Dec 1;61(6):1061-7 [22780991.001]
  • [Cites] J Biol Chem. 2007 Jun 15;282(24):17405-12 [17403667.001]
  • [Cites] BJOG. 2000 Oct;107(10):1309-11 [11028587.001]
  • [Cites] Nucleic Acids Res. 2016 Jan 4;44(D1):D356-64 [26582914.001]
  • [Cites] Nat Rev Drug Discov. 2013 Jan;12 (1):25-34 [23237917.001]
  • [Cites] Comput Appl Biosci. 1993 Dec;9(6):745-56 [8143162.001]
  • [Cites] Genome Res. 2008 Jan;18(1):113-22 [18025266.001]
  • [Cites] Nat Biotechnol. 2011 May 15;29(7):644-52 [21572440.001]
  • [Cites] J Neuroendocrinol. 2012 Apr;24(4):609-28 [22375852.001]
  • [Cites] Nat Protoc. 2015 Jul;10(7):1067-83 [26086408.001]
  • [Cites] Nat Rev Mol Cell Biol. 2002 Sep;3(9):639-50 [12209124.001]
  • [Cites] Mol Psychiatry. 2002;7(9):975-84 [12399951.001]
  • [Cites] Handb Exp Pharmacol. 2005;(169):335-69 [16594264.001]
  • [Cites] Nature. 1984 Apr 12-18;308(5960):652-3 [6709073.001]
  • [Cites] Biochem Biophys Res Commun. 1987 Nov 30;149(1):180-6 [3689410.001]
  • [Cites] Biochem Pharmacol. 1973 Dec 1;22(23):3099-108 [4202581.001]
  • [Cites] Bioinformatics. 2014 May 1;30(9):1312-3 [24451623.001]
  • [Cites] Pediatr Res. 1998 Nov;44(5):615-27 [9803440.001]
  • [Cites] J Mol Biol. 1990 Oct 5;215(3):403-10 [2231712.001]
  • [Cites] J Neurosci. 2005 Dec 7;25(49):11489-93 [16339042.001]
  • [Cites] Bioinformatics. 2011 Mar 15;27(6):863-4 [21278185.001]
  • [Cites] Nature. 2015 Aug 20;524(7565):315-21 [26245379.001]
  • [Cites] Bioinformatics. 2007 May 1;23(9):1061-7 [17332020.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3262-7 [18316733.001]
  • [Cites] Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8705-9 [8710935.001]
  • [Cites] J Med Chem. 2010 Dec 23;53(24):8585-96 [21117646.001]
  • [Cites] Prog Brain Res. 1998;119:501-21 [10074809.001]
  • [Cites] J Am Chem Soc. 2010 Mar 17;132(10):3514-22 [20163143.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 1990;30:501-34 [2160792.001]
  • [Cites] BMC Pregnancy Childbirth. 2007 Jun 01;7 Suppl 1:S10 [17570154.001]
  • [Cites] J Endocrinol. 1998 Feb;156(2):223-9 [9518866.001]
  • [Cites] J Recept Res. 1993;13(1-4):195-214 [8383753.001]
  • [Cites] J Neuroendocrinol. 2014 Jun;26(6):356-69 [24888645.001]
  • [Cites] Drug Discov Today Technol. 2013 Summer;10(2):e229-35 [24050273.001]
  • [Cites] Annu Rev Biochem. 2006;75:743-67 [16756510.001]
  • [Cites] Eur J Biochem. 1977 Nov 1;80(2):319-24 [923582.001]
  • [Cites] Nat Rev Neurosci. 2011 Aug 19;12(9):524-38 [21852800.001]
  • [Cites] Bioorg Med Chem. 2013 Sep 1;21(17):5373-82 [23849205.001]
  • [Cites] PLoS One. 2012;7(3):e32559 [22448224.001]
  • [Cites] EMBO J. 1995 May 15;14(10):2176-82 [7774575.001]
  • [Cites] Future Med Chem. 2012 Sep;4(14):1791-8 [23043476.001]
  • [Cites] Exp Physiol. 2014 Jan;99(1):55-61 [23955310.001]
  • [Cites] ACS Chem Biol. 2014 Jan 17;9(1):156-63 [24147816.001]
  • [Cites] Curr Pharm Des. 2010;16(28):3071-88 [20687879.001]
  • [Cites] Trends Pharmacol Sci. 2015 Jan;36(1):22-31 [25541108.001]
  • [Cites] Bioinformatics. 2007 Nov 1;23(21):2947-8 [17846036.001]
  • [Cites] Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):180-93 [1478777.001]
  • [Cites] Nature. 2001 Feb 15;409(6822):860-921 [11237011.001]
  • (PMID = 28145450.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


35. Melagraki G, Ntougkos E, Rinotas V, Papaneophytou C, Leonis G, Mavromoustakos T, Kontopidis G, Douni E, Afantitis A, Kollias G: Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL). PLoS Comput Biol; 2017 Apr;13(4):e1005372

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL).
  • [MeSH-minor] Animals. Anti-Inflammatory Agents / metabolism. Anti-Inflammatory Agents / pharmacology. Bone Marrow Cells. Cell Line. Cell Survival / drug effects. Cells, Cultured. Computer Simulation. Humans. Ligands. Mice

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] PLoS Comput Biol. 2011 Jul;7(7):e1002101 [21779156.001]
  • [Cites] J Mol Biol. 2003 Jul 18;330(4):891-913 [12850155.001]
  • [Cites] J Med Chem. 2010 Apr 8;53(7):2719-40 [20131845.001]
  • [Cites] Protein Expr Purif. 2012 Nov;86(1):35-44 [22989548.001]
  • [Cites] EMBO J. 1991 Dec;10(13):4025-31 [1721867.001]
  • [Cites] IUBMB Life. 2010 Oct;62(10):724-31 [20979208.001]
  • [Cites] J Exp Med. 1998 Oct 5;188(7):1343-52 [9763613.001]
  • [Cites] Proteins. 2006 Nov 15;65(3):712-25 [16981200.001]
  • [Cites] Nat Protoc. 2006;1(2):550-3 [17191086.001]
  • [Cites] J Med Chem. 2012 Jun 28;55(12):5704-19 [22537153.001]
  • [Cites] Comb Chem High Throughput Screen. 2016;19(4):260-1 [27109184.001]
  • [Cites] J Cheminform. 2013 May 21;5:24 [23694746.001]
  • [Cites] J Chem Theory Comput. 2013 Sep 10;9(9):3878-88 [26592383.001]
  • [Cites] Science. 1985 Aug 30;229(4716):869-71 [3895437.001]
  • [Cites] J Comput Chem. 2004 Jul 15;25(9):1157-74 [15116359.001]
  • [Cites] Cancer Res. 1988 Feb 1;48(3):589-601 [3335022.001]
  • [Cites] J Comput Chem. 2010 Mar;31(4):797-810 [19569205.001]
  • [Cites] Rheumatology (Oxford). 2010 Jul;49(7):1215-28 [20194223.001]
  • [Cites] Mol Inform. 2010 Jul 12;29(6-7):476-88 [27463326.001]
  • [Cites] ChemMedChem. 2011 May 2;6(5):765-8 [21365767.001]
  • [Cites] Curr Pharm Des. 2012;18(30):4679-84 [22650256.001]
  • [Cites] Chem Res Toxicol. 2008 Feb;21(2):374-85 [18095656.001]
  • [Cites] Angew Chem Int Ed Engl. 2012 Sep 3;51(36):9010-4 [22807261.001]
  • [Cites] Mini Rev Med Chem. 2008 Nov;8(13):1384-94 [18991754.001]
  • [Cites] Cytokine Growth Factor Rev. 2002 Aug-Oct;13(4-5):315-21 [12220546.001]
  • [Cites] ChemMedChem. 2006 Jul;1(7):687-8 [16902917.001]
  • [Cites] ACS Med Chem Lett. 2012 Feb 9;3(2):146-150 [22368763.001]
  • [Cites] Science. 1995 May 26;268(5214):1144-9 [7761829.001]
  • [Cites] Nat Chem. 2009 Nov;1(8):596-7 [21378947.001]
  • [Cites] J Biol Chem. 1993 Jun 15;268(17):12526-9 [8509393.001]
  • [Cites] Comb Chem High Throughput Screen. 2009 Jun;12(5):490-6 [19519328.001]
  • [Cites] Biochem Pharmacol. 1999 Sep 1;58(5):851-9 [10449196.001]
  • [Cites] Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14937-42 [11752442.001]
  • [Cites] Protein Sci. 2000 Sep;9(9):1753-73 [11045621.001]
  • [Cites] Angew Chem Int Ed Engl. 2003 Jun 6;42(22):2462-81 [12800163.001]
  • [Cites] Future Med Chem. 2013 Jan;5(1):69-79 [23256814.001]
  • [Cites] Bioinformatics. 2003 Oct;19 Suppl 2:ii246-55 [14534198.001]
  • [Cites] Nature. 1997 Feb 20;385(6618):729-33 [9034190.001]
  • [Cites] Expert Opin Drug Discov. 2009 Mar;4(3):279-92 [23489126.001]
  • [Cites] Arthritis Rheum. 1993 Dec;36(12):1681-90 [8250987.001]
  • [Cites] N Engl J Med. 2004 May 20;350(21):2167-79 [15152062.001]
  • [Cites] J Chem Inf Model. 2008 Jul;48(7):1337-44 [18564836.001]
  • [Cites] MAbs. 2010 Mar-Apr;2(2):137-47 [20190560.001]
  • [Cites] Arch Pharm (Weinheim). 2014 Nov;347(11):798-805 [25160057.001]
  • [Cites] PLoS Comput Biol. 2014 Jan;10(1):e1003400 [24453952.001]
  • [Cites] J Biol Chem. 2002 Feb 22;277(8):6631-6 [11733492.001]
  • [Cites] MAbs. 2009 Sep-Oct;1(5):422-31 [20065639.001]
  • [Cites] J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [26479676.001]
  • [Cites] J Exp Med. 1998 Sep 7;188(5):997-1001 [9730902.001]
  • [Cites] Cell. 1995 Dec 1;83(5):793-802 [8521496.001]
  • [Cites] Nat Chem Biol. 2006 Jan;2(1):14-5 [16408085.001]
  • [Cites] N Engl J Med. 2009 Aug 20;361(8):756-65 [19671655.001]
  • [Cites] Proteins. 2006 Sep 1;64(4):1058-68 [16838311.001]
  • [Cites] Immunol Rev. 1999 Jun;169:175-94 [10450517.001]
  • [Cites] Cell Death Differ. 2003 Jan;10(1):45-65 [12655295.001]
  • [Cites] J Clin Invest. 2001 Oct;108(7):971-9 [11581298.001]
  • [Cites] Chemosphere. 2016 Feb;144:995-1001 [26439516.001]
  • [Cites] Chem Soc Rev. 2009 Dec;38(12):3289-300 [20449049.001]
  • [Cites] Curr Top Med Chem. 2015;15(18):1827-36 [26002591.001]
  • [Cites] Acc Chem Res. 2000 Dec;33(12):889-97 [11123888.001]
  • [Cites] Curr Dir Autoimmun. 2010;11:1-26 [20173385.001]
  • [Cites] Science. 2005 Nov 11;310(5750):1022-5 [16284179.001]
  • [Cites] PLoS Comput Biol. 2011 Dec;7(12):e1002315 [22215997.001]
  • [Cites] J Chem Inf Model. 2006 Sep-Oct;46(5):1984-95 [16995729.001]
  • [Cites] Chem Biol Drug Des. 2010 Nov;76(5):397-406 [20925691.001]
  • [Cites] Hum Mol Genet. 2012 Feb 15;21(4):784-98 [22068587.001]
  • [Cites] PLoS Comput Biol. 2011 Oct;7(10):e1002189 [22022246.001]
  • [Cites] Protein Expr Purif. 2013 Jul;90(1):9-19 [23623854.001]
  • [Cites] Methods Enzymol. 1985;116:448-56 [4088089.001]
  • [Cites] Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2860-4 [20235259.001]
  • [Cites] J Chem Inf Model. 2011 Jan 24;51(1):69-82 [21117705.001]
  • [Cites] J Comput Aided Mol Des. 2012 Jan;26(1):135-6 [22160554.001]
  • [Cites] Nat Rev Immunol. 2015 Jun;15(6):362-74 [26008591.001]
  • [Cites] ACS Med Chem Lett. 2012 Nov 29;4(1):137-41 [24900576.001]
  • [Cites] Curr Dir Autoimmun. 2010;11:180-210 [20173395.001]
  • [Cites] PLoS Comput Biol. 2015 Apr 07;11(4):e1004074 [25849257.001]
  • [Cites] J Mol Biol. 1993 Dec 5;234(3):779-815 [8254673.001]
  • (PMID = 28426652.001).
  • [ISSN] 1553-7358
  • [Journal-full-title] PLoS computational biology
  • [ISO-abbreviation] PLoS Comput. Biol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Anti-Inflammatory Agents; 0 / Ligands; 0 / RANK Ligand; 0 / Tumor Necrosis Factor-alpha
  •  go-up   go-down


36. Qin HL, Leng J, Youssif BG, Amjad MW, Raja MA, Hussain MA, Hussain Z, Kazmi SN, Bukhari SN: Synthesis and mechanistic studies of curcumin analogs based oximes as potential anticancer agents. Chem Biol Drug Des; 2017 Feb 10;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship.
  • The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines.
  • The compounds 5a and 6a displayed potent activity on various targets such as BRAF<sup>V</sup><sup>600E</sup> and EGFR TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] This article is protected by copyright. All rights reserved.
  • (PMID = 28186369.001).
  • [ISSN] 1747-0285
  • [Journal-full-title] Chemical biology & drug design
  • [ISO-abbreviation] Chem Biol Drug Des
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; tubulin polymerization / Natural compounds / epidermal growth factor receptor (EGFR) / multidrug resistance (MDR) / α, β-unsaturated carbonyl
  •  go-up   go-down


37. LeVan TD, Smith LM, Heires AJ, Mikuls TR, Meza JL, Weissenburger-Moser LA, Romberger DJ: Interaction of CD14 haplotypes and soluble CD14 on pulmonary function in agricultural workers. Respir Res; 2017 Mar 16;18(1):49

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • BACKGROUND: Agricultural environments are contaminated with organic dusts containing bacterial components.
  • Chronic inhalation of organic dusts is implicated in respiratory diseases.
  • CD14 is a critical receptor for gram-negative lipopolysaccharide; however, its association with respiratory disease among agricultural workers is unknown.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Immunol. 2004 Apr 1;172(7):4470-9 [15034063.001]
  • [Cites] Respir Med. 2009 Sep;103(9):1358-65 [19361972.001]
  • [Cites] Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1157-64 [9351616.001]
  • [Cites] Oral Dis. 2009 Oct;15(7):484-9 [19500269.001]
  • [Cites] Am J Respir Cell Mol Biol. 1999 May;20(5):976-83 [10226067.001]
  • [Cites] Mol Immunol. 2015 Feb;63(2):143-52 [24951397.001]
  • [Cites] Int J Tuberc Lung Dis. 2012 Oct;16(10):1383-7 [23107636.001]
  • [Cites] Inhal Toxicol. 2010 Jul;22(8):648-56 [20540623.001]
  • [Cites] J Allergy Clin Immunol. 2001 Jan;107(1):31-5 [11149987.001]
  • [Cites] Immunol Today. 1992 Jan;13(1):11-6 [1739426.001]
  • [Cites] Respiration. 2013;86(3):183-9 [23949369.001]
  • [Cites] Clin Exp Allergy. 1995 Jan;25(1):73-9 [7728626.001]
  • [Cites] Am J Hum Genet. 2004 Jan;74(1):106-20 [14681826.001]
  • [Cites] J Am Coll Cardiol. 2002 Jul 3;40(1):34-42 [12103253.001]
  • [Cites] J Allergy Clin Immunol. 2010 Jun;125(6):1361-8 [20398919.001]
  • [Cites] Occup Environ Med. 2011 Nov;68(11):826-31 [21389010.001]
  • [Cites] Immunol Today. 1993 Mar;14(3):121-5 [7682078.001]
  • [Cites] J Allergy Clin Immunol. 2015 Feb;135(2):379-85 [25195169.001]
  • [Cites] J Allergy Clin Immunol. 2010 Aug;126(2):232-40 [20579716.001]
  • [Cites] Environ Health Perspect. 1984 Apr;55:97-109 [6376114.001]
  • [Cites] J Rheumatol. 2011 Dec;38(12):2509-16 [21921097.001]
  • [Cites] Am J Respir Crit Care Med. 2009 Mar 1;179(5):363-8 [19096003.001]
  • [Cites] Eur Respir J. 2009 Feb;33(2):273-81 [19010986.001]
  • [Cites] Int J Tuberc Lung Dis. 2013 Nov;17(11):1472-8 [24125453.001]
  • [Cites] J Immunol. 2001 Nov 15;167(10):5838-44 [11698458.001]
  • [Cites] BMC Pulm Med. 2014 Feb 13;14:20 [24524443.001]
  • [Cites] Eur Respir J. 2012 Mar;39(3):573-81 [21885391.001]
  • [Cites] PLoS One. 2014 Apr 18;9(4):e95578 [24748147.001]
  • [Cites] BMC Med Genet. 2011 Jul 11;12:93 [21745379.001]
  • [Cites] J Occup Environ Hyg. 2010 Feb;7(2):94-102 [19953413.001]
  • [Cites] Am J Respir Crit Care Med. 2005 Apr 1;171(7):773-9 [15591473.001]
  • [Cites] Am J Reprod Immunol. 2004 Sep;52(3):204-11 [15373760.001]
  • [Cites] J Toxicol Environ Health B Crit Rev. 2012;15(8):524-41 [23199220.001]
  • [Cites] PLoS One. 2013 Aug 19;8(8):e71237 [23990939.001]
  • [Cites] J Allergy Clin Immunol. 2008 Feb;121(2):434-440.e1 [17949800.001]
  • [Cites] Innate Immun. 2009 Apr;15(2):121-8 [19318422.001]
  • [Cites] Pharmacogenet Genomics. 2006 Apr;16(4):229-36 [16538169.001]
  • [Cites] Eur J Immunol. 1986 Dec;16(12):1583-9 [3493149.001]
  • [Cites] Environ Health Perspect. 2000 Aug;108 Suppl 4:705-12 [10931789.001]
  • [Cites] Genes Immun. 2006 Jan;7(1):77-80 [16395394.001]
  • [Cites] Crit Care. 2010;14(2):209 [20236452.001]
  • [Cites] Ann Agric Environ Med. 2002;9(1):71-8 [12088401.001]
  • (PMID = 28302109.001).
  • [ISSN] 1465-993X
  • [Journal-full-title] Respiratory research
  • [ISO-abbreviation] Respir. Res.
  • [Language] eng
  • [Grant] United States / CSRD VA / CX / I01 CX000434
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Agriculture / CD14 / COPD / Lung function / Polymorphism
  •  go-up   go-down


38. Caetano-Pinto P, Jamalpoor A, Ham J, Goumenou A, Mommersteeg M, Pijnenburg D, Ruijtenbeek R, Sanchez-Romero N, van Zelst B, Heil SG, Jansen J, Wilmer MJ, van Herpen CML, Masereeuw R: Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters. Mol Pharm; 2017 Jun 05;14(6):2147-2157
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma.
  • We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Am J Physiol Renal Physiol. 2007 Jul;293(1):F21-7 [17327500.001]
  • [Cites] J Biol Chem. 2003 Dec 19;278(51):51213-22 [14532287.001]
  • [Cites] Mol Pharmacol. 2013 Jul;84(1):139-46 [23640180.001]
  • [Cites] AAPS J. 2016 Mar;18(2):465-75 [26821801.001]
  • [Cites] Pharmaceuticals (Basel). 2012 Aug 10;5(8):802-36 [24280676.001]
  • [Cites] Nat Rev Rheumatol. 2014 Nov;10(11):682-90 [25112604.001]
  • [Cites] J Am Soc Nephrol. 2015 Nov;26(11):2716-29 [25788532.001]
  • [Cites] Oncotarget. 2016 Oct 11;7(41):67507-67520 [27589830.001]
  • [Cites] AAPS J. 2013 Jan;15(1):53-69 [23054972.001]
  • [Cites] J Biol Chem. 2009 Jan 30;284(5):2672-9 [19028678.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13481-6 [12359872.001]
  • [Cites] Nat Commun. 2016 Mar 16;7:10880 [26979622.001]
  • [Cites] Mol Biol Cell. 2006 Aug;17(8):3638-50 [16723498.001]
  • [Cites] Toxins (Basel). 2010 Aug;2(8):2055-82 [22069672.001]
  • [Cites] Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 [16829981.001]
  • [Cites] Cell Tissue Res. 2010 Feb;339(2):449-57 [19902259.001]
  • [Cites] J Res Med Sci. 2011 Apr;16(4):457-62 [22091259.001]
  • [Cites] Kidney Int. 2013 May;83(5):804-10 [23325080.001]
  • [Cites] J Pharmacol Exp Ther. 2002 Aug;302(2):666-71 [12130730.001]
  • [Cites] Toxins (Basel). 2010 Nov;2(11):2490-518 [22069563.001]
  • [Cites] BMC Cancer. 2012 Oct 10;12 :463 [23046567.001]
  • [Cites] J Biol Chem. 2008 Nov 21;283(47):32570-9 [18818201.001]
  • [Cites] Br J Clin Pharmacol. 2012 Jan;73(1):106-14 [21707700.001]
  • [Cites] Nat Rev Drug Discov. 2015 Jan;14(1):29-44 [25475361.001]
  • [Cites] Mol Pharmacol. 2011 May;79(5):795-805 [21325265.001]
  • [Cites] Mol Pharmacol. 2009 Sep;76(3):481-90 [19515966.001]
  • [Cites] Anal Bioanal Chem. 2013 Feb;405(5):1673-81 [23239179.001]
  • [Cites] PLoS One. 2007 Jul 04;2(7):e581 [17611617.001]
  • [Cites] Nat Rev Cancer. 2005 May;5(5):341-54 [15864276.001]
  • [Cites] J Pharmacol Exp Ther. 2007 Apr;321(1):362-9 [17255469.001]
  • [Cites] Ren Fail. 2015 May;37(4):734-9 [25707519.001]
  • [Cites] Acta Pharm Sin B. 2016 Sep;6(5):363-373 [27709005.001]
  • [Cites] Methods Mol Biol. 2013;977:259-71 [23436369.001]
  • [Cites] J Dermatol Sci. 2013 Jun;70(3):182-9 [23622764.001]
  • [Cites] Methods Mol Biol. 2011;761:75-83 [21755442.001]
  • [Cites] N Engl J Med. 2008 Mar 13;358(11):1160-74 [18337605.001]
  • [Cites] Cutis. 1999 Nov;64(5):332-4 [10582158.001]
  • [Cites] Cell Cycle. 2006 Dec;5(23):2820-6 [17172846.001]
  • [Cites] J Nephrol. 2017 Apr 5;:null [28382507.001]
  • [Cites] Exp Cell Res. 2014 Apr 15;323(1):87-99 [24560744.001]
  • [Cites] J Nephrol. 2015 Dec;28(6):647-57 [26341657.001]
  • [Cites] Mol Pharm. 2016 Mar 7;13(3):933-44 [26871298.001]
  • [Cites] J Clin Oncol. 2015 Oct 10;33(29):3305-13 [26351341.001]
  • [Cites] Nephrol Dial Transplant. 2012 Apr;27(4):1297-304 [22467748.001]
  • [Cites] N Engl J Med. 1983 Nov 3;309(18):1094-104 [6353235.001]
  • [Cites] Sci Rep. 2015 Jun 15;5:10641 [26073592.001]
  • [Cites] Pflugers Arch. 2011 Aug;462(2):359-69 [21523352.001]
  • [Cites] Cancer Treat Rev. 1977 Jun;4(2):87-101 [329989.001]
  • [Cites] Biochim Biophys Acta. 2013 Jan;1832(1):142-50 [23017367.001]
  • [Cites] Nat Med. 2016 Jun;22(6):624-31 [27135741.001]
  • [Cites] Int J Biochem Mol Biol. 2016 Jun 01;7(1):19-26 [27335683.001]
  • [Cites] ScientificWorldJournal. 2015;2015:751703 [26185782.001]
  • [Cites] Biochim Biophys Acta. 2015 Mar;1849(3):317-27 [25615818.001]
  • [Cites] Annu Rev Physiol. 1989;51:67-80 [2653200.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2013;53:503-29 [23140242.001]
  • [Cites] Hypertension. 2008 Dec;52(6):987-93 [18981331.001]
  • [Cites] PLoS One. 2014 Nov 12;9(11):e111728 [25390346.001]
  • [Cites] Drug Metab Dispos. 2006 Apr;34(4):524-33 [16415123.001]
  • (PMID = 28493713.001).
  • [ISSN] 1543-8392
  • [Journal-full-title] Molecular pharmaceutics
  • [ISO-abbreviation] Mol. Pharm.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; combination therapy / drug disposition / drug transporters / kinase signaling / renal proximal tubule
  •  go-up   go-down


39. Daśko M, Przybyłowska M, Rachon J, Masłyk M, Kubiński K, Misiak M, Składanowski A, Demkowicz S: Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors. Eur J Med Chem; 2017 Mar 10;128:79-87
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The inhibitory effects of the synthesized compounds were tested on STS isolated from human placenta and against estrogen receptor-(ER)-positive MCF-7 and T47D cells, as well as ER-negative MDA-MB-231 and SkBr3 cancer cell lines.
  • Compound 6j exhibited the highest potency against the MCF-7 and T47D cell lines (15.9 μM and 8.7 μM, respectively).
  • The GI<sub>50</sub> values of tamoxifen (used as a reference) were 6.8; 10.6; 15.1; 12.5 μM against MCF-7, T47D, MDA-MB-231 and SkBr3 cancer cell lines, respectively.
  • Despite the slightly lower activity of compounds 1 and 2 (both in enzymatic and cell-based experiments) compared to 6g and 6j, analogues 1 and 2 proved to selectively inhibit the growth of ER- and PR-positive cell lines.

  • MedlinePlus Health Information. consumer health - Breast Cancer.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28152429.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Evaluation Studies; Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / 3-(4-(2-(2,5-bis-trifluoromethyl-phenyl)-acetylamino)-phenyl)-coumarin-7-O-sulfamate; 0 / 3-(4-(3,4-difluoro-benzoylamino)-phenyl)-coumarin-7-O-sulfamate; 0 / Coumarins; 0 / Enzyme Inhibitors; 0 / Receptors, Estrogen; 0 / Sulfonamides; 0 / coumarin 7-O-sulfamate; EC 3.1.6.2 / Steryl-Sulfatase
  • [Keywords] NOTNLM ; Breast cancer (major topic) / Coumarin (major topic) / STS inhibitors (major topic) / Steroid sulfatase (major topic) / Sulfamates (major topic)
  •  go-up   go-down


40. Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ: Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci; 2017 Jan 24;18(2)
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM).
  • Some of the pathogenic mechanisms through which PM<sub>0.1</sub> may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2).
  • [MeSH-minor] Animals. Antioxidants / metabolism. Biomarkers. Cell Death. Epigenesis, Genetic. Genetic Predisposition to Disease. Humans. Inflammation / etiology. Inflammation / metabolism. Oxidative Stress. Reactive Oxygen Species / metabolism. Respiratory Tract Diseases / etiology. Respiratory Tract Diseases / metabolism. Signal Transduction

  • MedlinePlus Health Information. consumer health - Air Pollution.
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Carcinogenesis. 2009 Nov;30(11):1903-9 [19736307.001]
  • [Cites] Nanotoxicology. 2012 May;6(3):249-62 [21495880.001]
  • [Cites] Oncogene. 2001 Nov 22;20(53):7722-33 [11753650.001]
  • [Cites] Part Fibre Toxicol. 2011 Sep 02;8:26 [21888644.001]
  • [Cites] Annu Rev Genet. 2009;43:67-93 [19653858.001]
  • [Cites] J Biol Chem. 2008 Oct 24;283(43):28944-57 [18697742.001]
  • [Cites] Int J Environ Res Public Health. 2016 Jun 14;13(6):null [27314370.001]
  • [Cites] Free Radic Biol Med. 2015 Dec;89:342-57 [26408075.001]
  • [Cites] Environ Sci Technol. 2014;48(3):2043-50 [24397401.001]
  • [Cites] Nat Rev Mol Cell Biol. 2010 Apr;11(4):252-63 [20216554.001]
  • [Cites] Clin Chem. 2003 Aug;49(8):1292-6 [12881445.001]
  • [Cites] Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 [16885212.001]
  • [Cites] Environ Res. 2016 Oct;150:306-19 [27336235.001]
  • [Cites] Toxicol Mech Methods. 2015 ;25(4):287-95 [25798650.001]
  • [Cites] J Environ Pathol Toxicol Oncol. 2013;32(1):41-51 [23758151.001]
  • [Cites] Part Fibre Toxicol. 2013 Jun 07;10:22 [23742113.001]
  • [Cites] Toxicol Sci. 2014 Jul;140(1):204-23 [24752502.001]
  • [Cites] Environ Health Perspect. 2007 Aug;115(8):1177-82 [17687444.001]
  • [Cites] Free Radic Biol Med. 2012 May 1;52(9):2038-46 [22401859.001]
  • [Cites] Am J Physiol Lung Cell Mol Physiol. 2006 Oct;291(4):L725-33 [16751223.001]
  • [Cites] Nat Rev Mol Cell Biol. 2013 Nov;14(11):699-712 [24105322.001]
  • [Cites] Autophagy. 2016;12 (2):297-311 [26671423.001]
  • [Cites] Toxicol Lett. 2013 Jun 7;219(3):307-14 [23538036.001]
  • [Cites] J Immunol. 2006 Sep 15;177(6):4080-5 [16951372.001]
  • [Cites] Chem Res Toxicol. 2012 Apr 16;25(4):920-30 [22352400.001]
  • [Cites] Environ Res. 2016 Jan;144(Pt A):139-48 [26610292.001]
  • [Cites] Nanotechnology. 2013 Oct 11;24(40):405102 [24029385.001]
  • [Cites] F1000Res. 2016 Feb 22;5:null [26962445.001]
  • [Cites] Am J Pathol. 1992 Nov;141(5):1237-46 [1443055.001]
  • [Cites] Cancer Sci. 2010 Oct;101(10):2087-92 [20624164.001]
  • [Cites] Am J Respir Cell Mol Biol. 2013 Aug;49(2):204-11 [23672216.001]
  • [Cites] Toxicology. 2013 Nov 8;313(1):3-14 [23238276.001]
  • [Cites] PLoS One. 2013 May 17;8(5):e63812 [23691101.001]
  • [Cites] Am J Respir Crit Care Med. 2011 Apr 1;183(7):898-906 [21037022.001]
  • [Cites] Indian J Exp Biol. 2015 Sep;53(9):585-93 [26548078.001]
  • [Cites] Pharmacol Ther. 2013 Aug;139(2):189-212 [23583354.001]
  • [Cites] BMC Genomics. 2016 Nov 25;17 (1):976 [27887572.001]
  • [Cites] Circ Res. 2008 Mar 14;102(5):589-96 [18202315.001]
  • [Cites] Toxicol Appl Pharmacol. 2014 Nov 1;280(3):511-25 [25178717.001]
  • [Cites] J Immunol. 2012 Jan 1;188(1):68-76 [22156340.001]
  • [Cites] J Biol Chem. 2012 Apr 20;287(17):14004-11 [22396550.001]
  • [Cites] Toxicol Lett. 2014 Apr 21;226(2):107-16 [24472607.001]
  • [Cites] Part Fibre Toxicol. 2015 Mar 19;12:5 [25888760.001]
  • [Cites] Biomaterials. 2010 Aug;31(23):5996-6003 [20466420.001]
  • [Cites] Inhal Toxicol. 2011 Sep;23 (11):627-40 [21879948.001]
  • [Cites] Inhal Toxicol. 2015 ;27(13):724-30 [26525176.001]
  • [Cites] Nat Rev Genet. 2007 Jul;8(7):533-43 [17572691.001]
  • [Cites] Environ Mol Mutagen. 2011 Jul;52(6):425-39 [21259345.001]
  • [Cites] Nature. 2007 Feb 8;445(7128):666-70 [17237763.001]
  • [Cites] Cell Death Dis. 2011 May 19;2:e159 [21593791.001]
  • [Cites] Mutat Res. 2008 Jul-Aug;659(1-2):158-65 [18342568.001]
  • [Cites] Cardiovasc Res. 2015 Jun 1;106(3):465-77 [25824148.001]
  • [Cites] Toxicol In Vitro. 2009 Oct;23(7):1326-32 [19602432.001]
  • [Cites] Hum Mol Genet. 2013 May 15;22(10):1994-2009 [23393155.001]
  • [Cites] Part Fibre Toxicol. 2016 Feb 24;13:10 [26911867.001]
  • [Cites] Hum Mol Genet. 2011 Oct 1;20(19):3852-66 [21752829.001]
  • [Cites] Am J Respir Cell Mol Biol. 2013 Jan;48(1):114-24 [23065132.001]
  • [Cites] Biochem Biophys Res Commun. 2010 Jul 2;397(3):397-400 [20501321.001]
  • [Cites] Am J Pathol. 2011 Jul;179(1):125-33 [21703398.001]
  • [Cites] Nanotoxicology. 2011 Dec;5(4):502-16 [21417802.001]
  • [Cites] J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008 Oct-Dec;26(4):339-62 [19034792.001]
  • [Cites] Toxicol In Vitro. 2015 Apr;29(3):426-37 [25526690.001]
  • [Cites] Toxicol In Vitro. 2004 Apr;18(2):203-12 [14757111.001]
  • [Cites] Biochem Pharmacol. 2006 Nov 30;72(11):1605-21 [16889756.001]
  • [Cites] Toxicol Lett. 2012 Mar 25;209(3):264-9 [22265868.001]
  • [Cites] Genes Dev. 1999 Jan 1;13(1):20-5 [9887096.001]
  • [Cites] Int J Biochem Cell Biol. 1999 Oct;31(10):1209-19 [10582348.001]
  • [Cites] J Cell Sci. 2011 Feb 15;124(Pt 4):647-56 [21266470.001]
  • [Cites] J Innate Immun. 2013;5(6):543-54 [23595026.001]
  • [Cites] Genome Biol. 2010;11(5):R56 [20507594.001]
  • [Cites] Biochem Pharmacol. 2006 Oct 30;72(9):1161-79 [16970925.001]
  • [Cites] Epigenetics. 2014 Mar;9(3):377-86 [24270552.001]
  • [Cites] J Biomed Mater Res A. 2012 Oct;100(10 ):2554-62 [22528760.001]
  • [Cites] J Clin Invest. 2012 Dec;122(12 ):4698-709 [23114599.001]
  • [Cites] Toxicol Lett. 2014 May 16;227(1):29-40 [24614525.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 1999;39:67-101 [10331077.001]
  • [Cites] Semin Cell Dev Biol. 2014 Nov;35:2-13 [25160988.001]
  • [Cites] Part Fibre Toxicol. 2014 Apr 11;11:18 [24725891.001]
  • [Cites] ACS Nano. 2014 Oct 28;8(10):10328-42 [25315655.001]
  • [Cites] Biomaterials. 2010 Nov;31(32):8198-209 [20727582.001]
  • [Cites] Am J Physiol Lung Cell Mol Physiol. 2004 Nov;287(5):L981-91 [15234907.001]
  • [Cites] Am J Med Genet B Neuropsychiatr Genet. 2012 Mar;159B(2):141-51 [22232023.001]
  • [Cites] Biomarkers. 2012 Dec;17(8):750-7 [23030236.001]
  • [Cites] Nanotoxicology. 2014 Nov;8(7):786-98 [23914771.001]
  • [Cites] FASEB J. 2009 Mar;23(3):806-12 [18952709.001]
  • [Cites] Nanotechnology. 2012 Feb 3;23(4):045101 [22214761.001]
  • [Cites] Respir Res. 2015 May 06;16:54 [25943190.001]
  • [Cites] Epigenetics. 2012 Nov;7(11):1331-8 [23070629.001]
  • [Cites] Cell. 1995 Jan 27;80(2):331-40 [7834753.001]
  • [Cites] J Cell Sci. 2016 Jul 1;129(13):2475-81 [27252382.001]
  • [Cites] Environ Health Perspect. 2003 Apr;111(4):455-60 [12676598.001]
  • [Cites] Int J Nanomedicine. 2014 Nov 05;9:5131-41 [25395850.001]
  • [Cites] Heredity (Edinb). 2010 Jul;105(1):105-12 [20179736.001]
  • [Cites] Tob Induc Dis. 2014 Sep 05;12(1):15 [25214829.001]
  • [Cites] Environ Toxicol. 2016 Jun;31(6):713-23 [25448404.001]
  • [Cites] Am J Respir Crit Care Med. 2006 Feb 15;173(4):426-31 [16339922.001]
  • [Cites] Toxicol Lett. 2009 Jun 1;187(2):77-83 [19429248.001]
  • [Cites] Science. 2011 Jun 17;332(6036):1429-33 [21617040.001]
  • [Cites] Antioxid Redox Signal. 2007 Jan;9(1):49-89 [17115887.001]
  • [Cites] Arch Environ Contam Toxicol. 2015 Apr;68(3):521-33 [25543150.001]
  • [Cites] Environ Health Perspect. 2009 Nov;117(11):1745-51 [20049127.001]
  • [Cites] Anal Bioanal Chem. 2011 Apr;399(10):3573-8 [21308367.001]
  • [Cites] Environ Health Perspect. 2012 Oct;120(10 ):1425-31 [22851337.001]
  • [Cites] Biochem J. 2004 Sep 1;382(Pt 2):393-409 [15214841.001]
  • [Cites] Toxicol In Vitro. 2012 Mar;26(2):295-303 [22178768.001]
  • [Cites] RNA. 2015 Dec;21(12 ):2023-9 [26428695.001]
  • [Cites] J Toxicol Environ Health A. 2010;73(12):837-47 [20391124.001]
  • [Cites] Environ Res. 2006 Feb;100(2):197-204 [16171796.001]
  • [Cites] Mol Cell. 2012 Oct 26;48(2):219-30 [22959273.001]
  • [Cites] Environ Health Perspect. 2009 Feb;117(2):217-22 [19270791.001]
  • [Cites] Immunol Invest. 2006;35(3-4):297-325 [16916756.001]
  • [Cites] J Clin Invest. 2008 Feb;118(2):640-50 [18172554.001]
  • [Cites] Lung Cancer. 2011 Oct;74(1):41-7 [21388703.001]
  • [Cites] Environ Mol Mutagen. 2012 Jul;53(6):462-8 [22753103.001]
  • [Cites] Small. 2009 Sep;5(18):2067-76 [19642089.001]
  • [Cites] Part Fibre Toxicol. 2013 Jul 16;10:29 [23856009.001]
  • [Cites] Biomed Res Int. 2013;2013:279371 [23865044.001]
  • [Cites] Science. 2009 Jul 24;325(5939):473-7 [19556463.001]
  • [Cites] Toxicol Pathol. 2006;34(7):958-65 [17178696.001]
  • [Cites] Environ Health Perspect. 2003 Aug;111(10):1289-93 [12896848.001]
  • [Cites] Am J Physiol Lung Cell Mol Physiol. 2013 May 15;304(10):L665-77 [23502512.001]
  • [Cites] Mutat Res. 2011 Dec 24;726(2):129-35 [21945414.001]
  • [Cites] Biochim Biophys Acta. 2016 Oct;1859(10):1245-51 [27449861.001]
  • [Cites] Environ Toxicol Pharmacol. 2015 Mar;39(2):871-8 [25791752.001]
  • [Cites] Free Radic Biol Med. 2009 Nov 1;47(9):1304-9 [19666107.001]
  • [Cites] Biochem Biophys Res Commun. 2008 Jan 18;365(3):562-7 [18022386.001]
  • [Cites] Toxicol Lett. 2009 Oct 28;190(2):156-62 [19607894.001]
  • [Cites] Environ Health Perspect. 2010 Jul;118(7):982-7 [20194077.001]
  • [Cites] Nanotoxicology. 2012 Feb;6(1):1-21 [21319953.001]
  • (PMID = 28125025.001).
  • [ISSN] 1422-0067
  • [Journal-full-title] International journal of molecular sciences
  • [ISO-abbreviation] Int J Mol Sci
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Chemical-registry-number] 0 / Air Pollutants; 0 / Antioxidants; 0 / Biomarkers; 0 / Particulate Matter; 0 / Reactive Oxygen Species
  • [Keywords] NOTNLM ; air pollution / aryl hydrocarbon receptor / chronic obstructive pulmonary disease / epigenetics / nuclear factor-κB / particulate matter
  •  go-up   go-down


41. Giordano C, Rovito D, Barone I, Mancuso R, Bonofiglio D, Giordano F, Catalano S, Gabriele B, Andò S: Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21&lt;sup&gt;Cip/WAF1&lt;/sup&gt; gene expression in p53-independent manner. DNA Repair (Amst); 2017 Mar;51:20-30
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • We observed that benzofuran compounds bearing a phenyl or tert-butyl substituent α to the methoxycarbonyl group significantly inhibited anchorage-dependent and -independent cell growth, and induced G0/G1 cell cycle arrest in human estrogen receptor alpha positive (MCF-7 and T47D) and in triple negative MDA-MB-231 breast cancer cells, without affecting growth of MCF-10A normal breast epithelial cells.
  • Overall, we provide evidence that the newly tested benzofuran derivatives showed antiproliferative and pro-apoptotic activities against breast cancer cells regardless estrogen receptor status, suggesting their possible clinical development as anticancer agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28108275.001).
  • [ISSN] 1568-7856
  • [Journal-full-title] DNA repair
  • [ISO-abbreviation] DNA Repair (Amst.)
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Anticancer activity / Benzofurans / Breast cancer / p21Cip/WAF1
  •  go-up   go-down


42. Yin H, Chen L, Yang B, Bardelang D, Wang C, Lee SMY, Wang R: Fluorescence enhancement and pK&lt;sub&gt;a&lt;/sub&gt; shift of a rho kinase inhibitor by a synthetic receptor. Org Biomol Chem; 2017 May 23;15(20):4336-4343

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Fluorescence enhancement and pK<sub>a</sub> shift of a rho kinase inhibitor by a synthetic receptor.
  • Fasudil (FSD), a selective rho kinase (ROCK) inhibitor, was found to form 1 : 1 host-guest inclusion complexes with a synthetic macrocyclic receptor, cucurbit[7]uril (CB[7]), in aqueous solutions, as evidenced by <sup>1</sup>H NMR, photoluminescence and UV-visible spectroscopic titrations, isothermal titration calorimetry (ITC) titration, and electrospray ionization (ESI) mass spectrometry, as well as density functional theory (DFT) molecular modeling.
  • Furthermore, our in vitro study of the bioactivity of FSD in the absence and presence of CB[7] on a neural cell line, SH-SY5Y, showed that the complexation preserved the drug's pro-neurite efficacy.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28470298.001).
  • [ISSN] 1477-0539
  • [Journal-full-title] Organic & biomolecular chemistry
  • [ISO-abbreviation] Org. Biomol. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


43. Khatra H, Bose C, Sinha S: Discovery of hedgehog antagonists for cancer therapy. Curr Med Chem; 2017 Mar 16;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Most of the reported small molecules primarily antagonize the Smoothened receptor although agents targeting Gli1 transcription factor and Shh ligand have also been discovered.
  • FDA) for the treatment of basal cell carcinoma.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
  • (PMID = 28302010.001).
  • [ISSN] 1875-533X
  • [Journal-full-title] Current medicinal chemistry
  • [ISO-abbreviation] Curr. Med. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; GLI / Hedgehog pathway / anticancer / inhibitors / small molecule / smoothened
  •  go-up   go-down


44. Kostarnoy AV, Gancheva PG, Lepenies B, Tukhvatulin AI, Dzharullaeva AS, Polyakov NB, Grumov DA, Egorova DA, Kulibin AY, Bobrov MA, Malolina EA, Zykin PA, Soloviev AI, Riabenko E, Maltseva DV, Sakharov DA, Tonevitsky AG, Verkhovskaya LV, Logunov DY, Naroditsky BS, Gintsburg AL: Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate. Proc Natl Acad Sci U S A; 2017 Mar 28;114(13):E2758-E2765

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate.
  • Here, we show that cholesterol sulfate, a molecule present in relatively high concentrations in the epithelial layer of barrier tissues, is selectively recognized by Mincle (Clec4e), a C-type lectin receptor of the innate immune system that is strongly up-regulated in response to skin damage.
  • In a well-established model of allergic contact dermatitis, the absence of Mincle leads to a significant suppression of the magnitude of the skin inflammatory response as assessed by changes in ear thickness, myeloid cell infiltration, and cytokine and chemokine secretion.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Lipid Res. 2008 Dec;49(12):2678-89 [18703820.001]
  • [Cites] Br J Cancer. 2014 Feb 4;110(3):753-63 [24322891.001]
  • [Cites] J Biol Chem. 2014 Oct 24;289(43):30052-62 [25202022.001]
  • [Cites] Cold Spring Harb Perspect Biol. 2012 Mar 01;4(3):null [22296764.001]
  • [Cites] Nature. 2012 Apr 25;484(7395):465-72 [22538607.001]
  • [Cites] Nat Rev Immunol. 2010 Dec;10(12):826-37 [21088683.001]
  • [Cites] Cancer Res. 1988 Sep 15;48(18):5289-95 [3409253.001]
  • [Cites] J Immunol. 2008 May 1;180(9):5826-32 [18424701.001]
  • [Cites] Exp Dermatol. 2012 Jan;21(1):25-31 [22151387.001]
  • [Cites] J Immunol. 2010 Mar 15;184(6):2756-60 [20164423.001]
  • [Cites] J Biol Chem. 2015 Oct 16;290(42):25322-32 [26296894.001]
  • [Cites] Nat Commun. 2014 Sep 19;5:4982 [25236782.001]
  • [Cites] J Neurotrauma. 2015 Feb 15;32(4):228-36 [25111533.001]
  • [Cites] Immunol Rev. 2000 Feb;173:89-97 [10719670.001]
  • [Cites] Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14292-7 [20660725.001]
  • [Cites] J Lipid Res. 2003 Jul;44(7):1268-78 [12730293.001]
  • [Cites] Science. 2002 Apr 12;296(5566):301-5 [11951032.001]
  • [Cites] Eur J Appl Physiol. 2012 Mar;112(3):963-72 [21717121.001]
  • [Cites] J Exp Med. 2010 Dec 20;207(13):2921-30 [21115688.001]
  • [Cites] Immunol Cell Biol. 2016 Feb;94(2):164-8 [26215791.001]
  • [Cites] Front Immunol. 2015 Aug 18;6:422 [26347745.001]
  • [Cites] Nat Immunol. 2008 Oct;9(10):1179-88 [18776906.001]
  • [Cites] Clin Rev Allergy Immunol. 2016 Jun;50(3):377-89 [27025861.001]
  • [Cites] Immunity. 2013 May 23;38(5):1050-62 [23602766.001]
  • [Cites] Allergy. 2011 Sep;66(9):1152-63 [21599706.001]
  • [Cites] Nature. 2016 Jan 21;529(7586):307-15 [26791721.001]
  • [Cites] Nat Rev Immunol. 2016 Jul;16(7):433-48 [27291962.001]
  • [Cites] Am J Pathol. 2012 Jul;181(1):8-18 [22640807.001]
  • [Cites] Talanta. 2013 Nov 15;116:115-21 [24148381.001]
  • [Cites] J Lipid Res. 1983 Feb;24(2):131-40 [6833890.001]
  • [Cites] Nature. 2016 Apr 14;532(7598):245-9 [27049944.001]
  • [Cites] Annu Rev Immunol. 1994;12:991-1045 [8011301.001]
  • [Cites] J Clin Invest. 1996 Sep 1;98(5):1158-64 [8787679.001]
  • [Cites] Stroke. 2015 Aug;46(8):2277-86 [26138128.001]
  • [Cites] J Invest Dermatol. 2007 Jun;127(6):1430-5 [17273160.001]
  • [Cites] J Neurochem. 1980 Jul;35(1):266-9 [7452256.001]
  • [Cites] Anal Biochem. 1997 Jun 15;249(1):67-78 [9193710.001]
  • [Cites] J Immunol. 2016 Apr 1;196 (7):3148-58 [26921309.001]
  • [Cites] Nat Commun. 2014 May 07;5:3755 [24806599.001]
  • [Cites] J Immunol. 2015 Sep 1;195(5):2417-28 [26202982.001]
  • [Cites] Front Immunol. 2014 Jun 23;5:288 [25002863.001]
  • [Cites] Nature. 2010 Apr 29;464(7293):1357-61 [20428172.001]
  • [Cites] Cold Spring Harb Symp Quant Biol. 1989;54 Pt 1:1-13 [2700931.001]
  • [Cites] J Cell Physiol. 1987 Dec;133(3):573-8 [3480290.001]
  • [Cites] Nat Rev Immunol. 2015 Feb;15(2):104-16 [25614320.001]
  • [Cites] Clin Dev Immunol. 2013;2013:261037 [24023564.001]
  • [Cites] J Exp Med. 1992 Dec 1;176(6):1693-702 [1460426.001]
  • [Cites] Curr Opin Immunol. 2014 Feb;26:147-56 [24556412.001]
  • [Cites] J Leukoc Biol. 2007 Jan;81(1):1-5 [17032697.001]
  • (PMID = 28292894.001).
  • [ISSN] 1091-6490
  • [Journal-full-title] Proceedings of the National Academy of Sciences of the United States of America
  • [ISO-abbreviation] Proc. Natl. Acad. Sci. U.S.A.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Mincle / allergy / cholesterol sulfate / innate immunity / sterile inflammation
  •  go-up   go-down


45. Keller AN, Eckle SB, Xu W, Liu L, Hughes VA, Mak JY, Meehan BS, Pediongco T, Birkinshaw RW, Chen Z, Wang H, D'Souza C, Kjer-Nielsen L, Gherardin NA, Godfrey DI, Kostenko L, Corbett AJ, Purcell AW, Fairlie DP, McCluskey J, Rossjohn J: Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat Immunol; 2017 Apr;18(4):402-411
Faculty of 1000. commentaries/discussion - See the articles recommended by F1000Prime's Faculty of more than 8,000 leading experts in Biology and Medicine. (subscription/membership/fee required).

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands.
  • Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket.
  • This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.
  • [MeSH-minor] Binding Sites. Cell Line. Crystallography, X-Ray. Drug Discovery. Humans. Hydrogen Bonding. Ligands. Lymphocyte Activation / drug effects. Lymphocyte Activation / immunology. Models, Molecular. Molecular Conformation. Molecular Structure. Protein Binding. Receptors, Antigen, T-Cell / chemistry. Receptors, Antigen, T-Cell / metabolism. Structure-Activity Relationship

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Exp Med. 2013 Oct 21;210(11):2305-20 [24101382.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [20383002.001]
  • [Cites] J Exp Med. 2014 Jul 28;211(8):1585-600 [25049336.001]
  • [Cites] Nat Commun. 2014 May 15;5:3866 [24832684.001]
  • [Cites] J Pharm Sci. 1978 Apr;67(4):526-31 [641762.001]
  • [Cites] J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 [19461840.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [20057044.001]
  • [Cites] Nat Rev Immunol. 2015 Oct;15(10 ):643-54 [26388332.001]
  • [Cites] J Exp Med. 2010 Jul 5;207(7):1555-67 [20566715.001]
  • [Cites] Nature. 2012 Nov 29;491(7426):717-23 [23051753.001]
  • [Cites] Arh Hig Rada Toksikol. 2016 Mar;67(1):1-8 [27092633.001]
  • [Cites] Clin Pharmacokinet. 1997 Sep;33(3):184-213 [9314611.001]
  • [Cites] Immunity. 2016 Jan 19;44(1):32-45 [26795251.001]
  • [Cites] Immunity. 2009 Feb 20;30(2):193-203 [19167249.001]
  • [Cites] Nat Biotechnol. 2004 May;22(5):589-94 [15064769.001]
  • [Cites] J Med Chem. 2007 Jan 11;50(1):74-82 [17201411.001]
  • [Cites] J Pediatr. 2014 Feb;164(2):231-6 [24286573.001]
  • [Cites] Immunol Res. 2014 Dec;60(2-3):289-310 [25391609.001]
  • [Cites] Mucosal Immunol. 2015 Mar;8(2):429-40 [25269706.001]
  • [Cites] J Biol Chem. 2015 Dec 18;290(51):30204-11 [26468291.001]
  • [Cites] Nature. 2012 Jun 28;486(7404):554-8 [22722860.001]
  • [Cites] PLoS Biol. 2010 Jun 29;8(6):e1000407 [20613858.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [21460441.001]
  • [Cites] J Immunol Methods. 1987 Jul 16;101(1):141-5 [3611791.001]
  • [Cites] Nat Immunol. 2016 May;17 (5):531-7 [27043408.001]
  • [Cites] Clin Transl Allergy. 2015 Oct 13;5:34 [26468368.001]
  • [Cites] Blood. 2003 Nov 15;102(10):3530-40 [12869497.001]
  • [Cites] Annu Rev Immunol. 2014;32:323-66 [24499274.001]
  • [Cites] Nature. 2014 May 15;509(7500):361-5 [24695216.001]
  • [Cites] Front Immunol. 2014 Oct 08;5:450 [25339949.001]
  • [Cites] J Biol Chem. 2005 Jun 3;280(22):21183-93 [15802267.001]
  • [Cites] Nat Rev Immunol. 2006 Apr;6(4):271-82 [16557259.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [20124702.001]
  • [Cites] Nat Immunol. 2010 Aug;11(8):701-8 [20581831.001]
  • [Cites] Nature. 1981 May 21;291(5812):238-9 [7015147.001]
  • [Cites] Immunol Cell Biol. 2014 Apr;92(4):377-83 [24394993.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2012;52:401-31 [22017685.001]
  • [Cites] Blood. 2011 Jan 27;117(4):1250-9 [21084709.001]
  • [Cites] Mucosal Immunol. 2017 Jan;10 (1):58-68 [27143301.001]
  • [Cites] Nat Commun. 2013;4:2142 [23846752.001]
  • [Cites] J Immunol. 2006 Feb 1;176(3):1618-27 [16424191.001]
  • [Cites] Nat Immunol. 2015 Nov;16(11):1114-23 [26482978.001]
  • [Cites] J Exp Med. 2012 Apr 9;209(4):761-74 [22412157.001]
  • [Cites] Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [20124692.001]
  • [Cites] Pediatr Blood Cancer. 2005 Jun 15;44(7):638-42 [15704189.001]
  • [Cites] Nat Rev Rheumatol. 2015 Aug;11(8):450-61 [25986717.001]
  • [Cites] J Exp Med. 1999 Jun 21;189(12):1907-21 [10377186.001]
  • [Cites] Nature. 2003 Mar 13;422(6928):164-9 [12634786.001]
  • (PMID = 28166217.001).
  • [ISSN] 1529-2916
  • [Journal-full-title] Nature immunology
  • [ISO-abbreviation] Nat. Immunol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Histocompatibility Antigens Class I; 0 / Ligands; 0 / MR1 protein, human; 0 / Minor Histocompatibility Antigens; 0 / Receptors, Antigen, T-Cell
  •  go-up   go-down


46. Tang LL, Wang JD, Xu TT, Zhao Z, Zheng JJ, Ge RS, Zhu DY: Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes. Toxicology; 2017 May 01;382:108-116
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes.
  • Perfluorooctane sulfonate (PFOS) is a persistent organic contaminant that may cause cardiotoxicity in animals and humans.
  • Here, we focused on mitochondrial toxicity of PFOS in ES cell-derived cardiomyocytes.
  • [MeSH-minor] Adenosine Triphosphate / metabolism. Animals. Calcium / metabolism. Calcium / physiology. Carrier Proteins / metabolism. Cell Differentiation / drug effects. Cell Line. Lactic Acid / metabolism. Membrane Potential, Mitochondrial / drug effects. Mice. Multiprotein Complexes / metabolism. Receptor, Epidermal Growth Factor / metabolism. TOR Serine-Threonine Kinases / metabolism

  • Hazardous Substances Data Bank. Perfluorooctane sulfonic acid .
  • Hazardous Substances Data Bank. LACTIC ACID .
  • Hazardous Substances Data Bank. CALCIUM, ELEMENTAL .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier B.V. All rights reserved.
  • (PMID = 28288859.001).
  • [ISSN] 1879-3185
  • [Journal-full-title] Toxicology
  • [ISO-abbreviation] Toxicology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Ireland
  • [Chemical-registry-number] 0 / Alkanesulfonic Acids; 0 / Carrier Proteins; 0 / Environmental Pollutants; 0 / Fluorocarbons; 0 / Multiprotein Complexes; 0 / TOR complex 2; 0 / rictor protein, mouse; 33X04XA5AT / Lactic Acid; 8L70Q75FXE / Adenosine Triphosphate; 9H2MAI21CL / perfluorooctane sulfonic acid; EC 2.7.1.1 / TOR Serine-Threonine Kinases; EC 2.7.10.1 / EGFR protein, mouse; EC 2.7.10.1 / Receptor, Epidermal Growth Factor; SY7Q814VUP / Calcium
  • [Keywords] NOTNLM ; Ca(2+) / Embryonic stem cell-derived cardiomyocytes (ESC-CMs) / Mitochondria / Perfluorooctane sulfonate (PFOS) / Rictor
  •  go-up   go-down


47. Fu L, Hu H, Liu Y, Jing Z, Li W: Woodchuck sodium taurocholate cotransporting polypeptide supports low-level hepatitis B and D virus entry. Virology; 2017 May;505:1-11
Genetic Alliance. consumer health - Hepatitis.

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Sodium taurocholate cotransporting polypeptide (NTCP) is the functional receptor for human hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV).
  • [MeSH-major] Hepatitis B virus / metabolism. Hepatitis Delta Virus / metabolism. Host Specificity / genetics. Organic Anion Transporters, Sodium-Dependent / genetics. Receptors, Virus / genetics. Symporters / genetics. Virus Internalization
  • [MeSH-minor] Amino Acid Sequence / genetics. Animals. Binding Sites / genetics. Cell Line, Tumor. Cloning, Molecular. Hep G2 Cells. Hepatocytes / virology. Humans. Liver / metabolism. Liver / virology. Male. Marmota / virology. Protein Binding / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28213271.001).
  • [ISSN] 1096-0341
  • [Journal-full-title] Virology
  • [ISO-abbreviation] Virology
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Organic Anion Transporters, Sodium-Dependent; 0 / Receptors, Virus; 0 / Symporters; 145420-23-1 / sodium-bile acid cotransporter
  • [Keywords] NOTNLM ; Hepatitis B virus / Hepatitis D virus / Sodium taurocholate cotransporting polypeptide / Viral entry / Woodchuck
  •  go-up   go-down


48. Truebenbach I, Gorges J, Kuhn J, Kern S, Baratti E, Kazmaier U, Wagner E, Lächelt U: Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy. Macromol Biosci; 2017 Mar 30;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Sequence-Defined Oligoamide Drug Conjugates of Pretubulysin and Methotrexate for Folate Receptor Targeted Cancer Therapy.
  • The conjugation of small molecule drugs to ligand containing carrier systems facilitates receptor targeted delivery.
  • The folate receptor (FR) constitutes an ideal target for tumor selective therapy, being overexpressed on several tumor types.
  • Their structure activity relationships are assessed in respect to dihydrofolate reductase inhibition, receptor mediated endocytosis, and cytotoxicity.
  • In a combined PT/MTX cytotoxicity study in FR-overexpressing KB and L1210 cells, a 2-arm MTX-PT construct or the 4-arm analog displays the highest potency in the respective cell lines.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • (PMID = 28371444.001).
  • [ISSN] 1616-5195
  • [Journal-full-title] Macromolecular bioscience
  • [ISO-abbreviation] Macromol Biosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; combination therapy / drug conjugate / methotrexate / pretubulysin / targeting
  •  go-up   go-down


49. Nagy L, Márton J, Vida A, Kis G, Bokor É, Kun S, Gönczi M, Docsa T, Tóth A, Antal M, Gergely P, Csóka B, Pacher P, Somsák L, Bai P: Glycogen phosphorylase inhibition improves beta cell function. Br J Pharmacol; 2017 Apr 13;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Glycogen phosphorylase inhibition improves beta cell function.
  • Glycogen metabolism has implications in beta cell function.
  • Furthermore, GPi treatment induced insulin receptor β (InsRβ), Akt and p70S6K phosphorylation, as well as pancreatic and duodenal homeobox 1(PDX1) and insulin expression.
  • CONCLUSION AND IMPLICATIONS: These data suggest that GPi-s also target beta cells and can be repurposed as agents to preserve beta cell function or even ameliorate beta cell dysfunction in different forms of diabetes.

  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 The British Pharmacological Society.
  • (PMID = 28409826.001).
  • [ISSN] 1476-5381
  • [Journal-full-title] British journal of pharmacology
  • [ISO-abbreviation] Br. J. Pharmacol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


50. Hirsch I, Janovec V, Stranska R, Bendriss-Vermare N: Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells. Front Immunol; 2017;8:394

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells.
  • Surprisingly, interference of ITAM-associated receptor signaling with TLR pathways has not been reported in conventional dendritic cells.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Sci Signal. 2011 Apr 19;4(169):ra24 [21505186.001]
  • [Cites] J Virol. 2012 Jan;86(2):1090-6 [22090103.001]
  • [Cites] Gastroenterology. 2013 Feb;144(2):414-425.e7 [23089201.001]
  • [Cites] Immunity. 2005 Jan;22(1):31-42 [15664157.001]
  • [Cites] Nat Immunol. 2010 May;11(5):373-84 [20404851.001]
  • [Cites] J Biol Chem. 2002 Oct 4;277(40):36940-7 [12145291.001]
  • [Cites] Nat Immunol. 2010 Aug;11(8):734-42 [20639876.001]
  • [Cites] Sci Signal. 2011 Apr 19;4(169):pe20 [21505184.001]
  • [Cites] Trends Immunol. 2010 Oct;31(10):391-7 [20832362.001]
  • [Cites] Blood. 2012 Nov 29;120(23):4544-51 [23053572.001]
  • [Cites] Nat Rev Immunol. 2015 Aug;15(8):471-85 [26160613.001]
  • [Cites] J Exp Med. 2001 Dec 17;194(12):1823-34 [11748283.001]
  • [Cites] Nat Immunol. 2008 Dec;9(12):1407-14 [18931679.001]
  • [Cites] Nat Rev Immunol. 2008 Oct;8(10 ):816-22 [18787561.001]
  • [Cites] Cancer Res. 2012 Dec 1;72(23):6130-41 [23026134.001]
  • [Cites] Protein Cell. 2013 Jan;4(1):40-52 [23132256.001]
  • [Cites] Nat Immunol. 2004 Feb;5(2):190-8 [14716310.001]
  • [Cites] J Immunol. 2001 Apr 15;166(8):5000-7 [11290780.001]
  • [Cites] Annu Rev Immunol. 2015;33:257-90 [25581309.001]
  • [Cites] J Immunol. 2015 Aug 15;195(4):1723-31 [26123355.001]
  • [Cites] Immunity. 2013 Jun 27;38(6):1176-86 [23770228.001]
  • [Cites] Nature. 2008 Mar 13;452(7184):234-8 [18305481.001]
  • [Cites] Nature. 2005 Mar 10;434(7030):243-9 [15665823.001]
  • [Cites] Mol Immunol. 2010 Apr;47(7-8):1569-78 [20138367.001]
  • [Cites] Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3396-401 [17360657.001]
  • [Cites] Immunity. 2012 Feb 24;36(2):166-74 [22365663.001]
  • [Cites] Nat Rev Immunol. 2007 Feb;7(2):155-61 [17220916.001]
  • [Cites] J Exp Med. 2006 Jun 12;203(6):1399-405 [16735691.001]
  • [Cites] Nat Rev Immunol. 2009 Jul;9(7):465-79 [19521399.001]
  • [Cites] J Immunol. 2005 Nov 1;175(9):5724-31 [16237063.001]
  • [Cites] J Exp Med. 2014 Sep 22;211(10):1977-91 [25180065.001]
  • [Cites] Nat Rev Immunol. 2014 Feb;14(2):94-108 [24445665.001]
  • [Cites] Cell. 1994 Dec 2;79(5):913-22 [8001128.001]
  • [Cites] J Exp Med. 2011 Sep 26;208(10):1989-2003 [21930769.001]
  • [Cites] J Biol Chem. 2012 Jun 1;287(23):19216-28 [22511786.001]
  • [Cites] PLoS Biol. 2007 Sep 11;5(10):e248 [17850179.001]
  • [Cites] Blood. 2008 Apr 15;111(8):4245-53 [18258799.001]
  • [Cites] J Immunol. 2011 Dec 1;187(11):5693-702 [22021614.001]
  • [Cites] Nat Immunol. 2008 Sep;9(9):1028-36 [18690222.001]
  • [Cites] Blood. 2013 Jan 17;121(3):459-67 [23212525.001]
  • [Cites] J Immunol. 2007 Oct 1;179(7):4598-607 [17878357.001]
  • [Cites] J Clin Invest. 2014 Sep;124(9):3945-59 [25061875.001]
  • [Cites] J Immunol. 2012 Apr 1;188(7):3447-57 [22368279.001]
  • [Cites] Immunity. 2010 Apr 23;32(4):518-30 [20362473.001]
  • [Cites] Science. 2010 Sep 17;329(5998):1530-4 [20847273.001]
  • [Cites] Front Immunol. 2014 Sep 18;5:449 [25278942.001]
  • [Cites] J Immunol. 2009 Dec 15;183(12):7984-93 [19933865.001]
  • [Cites] Cell Mol Immunol. 2012 Mar;9(2):105-12 [22246129.001]
  • [Cites] Blood. 2006 Feb 15;107(4):1459-67 [16239426.001]
  • [Cites] Eur J Immunol. 2008 Jul;38(7):1822-32 [18581320.001]
  • [Cites] EMBO Mol Med. 2014 Sep 12;6(10 ):1312-27 [25216727.001]
  • [Cites] Nat Immunol. 2008 Feb;9(2):186-93 [18084294.001]
  • [Cites] Annu Rev Immunol. 2013;31:743-91 [23330953.001]
  • [Cites] J Biol Chem. 2001 Feb 16;276(7):4957-63 [11067845.001]
  • [Cites] Cell. 2000 Dec 22;103(7):1071-83 [11163183.001]
  • [Cites] J Immunol. 2013 Jan 15;190(2):695-702 [23241879.001]
  • [Cites] Eur J Immunol. 2007 Dec;37(12 ):3564-75 [18022864.001]
  • [Cites] Blood. 2005 Sep 15;106(6):2076-82 [15941912.001]
  • [Cites] Annu Rev Immunol. 2012;30:491-529 [22224766.001]
  • [Cites] J Immunol. 2011 Mar 1;186(5):3104-12 [21282509.001]
  • [Cites] PLoS One. 2016 Jun 03;11(6):e0156063 [27258042.001]
  • [Cites] EMBO Mol Med. 2015 Mar 11;7(4):464-76 [25762615.001]
  • [Cites] J Immunol. 2003 May 1;170(9):4465-74 [12707322.001]
  • [Cites] J Exp Med. 2010 Jun 7;207(6):1261-71 [20479117.001]
  • [Cites] Cancer Res. 2012 Oct 15;72(20):5188-97 [22836755.001]
  • [Cites] Immunity. 1997 Apr;6(4):419-28 [9133421.001]
  • [Cites] Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):E898-904 [22431588.001]
  • [Cites] J Immunol. 2012 Jul 15;189(2):786-92 [22706086.001]
  • [Cites] Immunol Rev. 2008 Dec;226:41-56 [19161415.001]
  • [Cites] J Exp Med. 2009 Jul 6;206(7):1603-14 [19564354.001]
  • [Cites] Cell Immunol. 2010;265(1):15-22 [20673884.001]
  • [Cites] J Leukoc Biol. 2009 Mar;85(3):518-25 [19028959.001]
  • [Cites] J Exp Med. 2009 Aug 31;206(9):1863-71 [19667062.001]
  • [Cites] Cell Host Microbe. 2015 Dec 9;18(6):682-93 [26651944.001]
  • [Cites] Int Immunol. 2008 Jan;20(1):155-64 [18048391.001]
  • [Cites] Blood. 2007 Jun 15;109(12):5371-9 [17332250.001]
  • [Cites] Sci STKE. 2006 Jan 31;2006(320):re1 [16449667.001]
  • [Cites] Nat Rev Immunol. 2013 Sep;13(9):679-92 [23954936.001]
  • [Cites] Nat Immunol. 2008 Sep;9(9):1019-27 [18677317.001]
  • [Cites] Eur J Immunol. 2006 Jul;36(7):1646-53 [16783855.001]
  • [Cites] J Immunol. 2013 Dec 15;191(12):5933-40 [24218450.001]
  • [Cites] J Leukoc Biol. 2016 Nov;100(5):927-941 [27343013.001]
  • [Cites] Cancer Res. 2012 Oct 15;72(20):5240-9 [22850422.001]
  • [Cites] Immunity. 2013 Jul 25;39(1):91-3 [23890067.001]
  • [Cites] Blood. 2006 Mar 15;107(6):2474-6 [16293595.001]
  • [Cites] Int J Cancer. 2013 Aug 1;133(3):771-8 [23389942.001]
  • (PMID = 28439271.001).
  • [Journal-full-title] Frontiers in immunology
  • [ISO-abbreviation] Front Immunol
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; B cell receptor-like signaling / conventional dendritic cells / immunoreceptor tyrosine-based activation motif-associated receptor / macrophage / plasmacytoid dendritic cell / regulatory receptors / toll-like receptors
  •  go-up   go-down


51. Plano D, Alcolea V, Sanmartín C, Sharma AK: Methods of selecting combination therapy for colorectal cancer patients: a patent evaluation of US20160025730A1. Expert Opin Ther Pat; 2017 May;27(5):527-538
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Targeted therapy drugs (TTDs) are a valid treatment, epithelial growth factor receptor (EGFR) inhibitors being one of the most commonly used for CRC patients.
  • Areas covered: The invention proposes the use of ErbB protein levels and ErbB receptor dimer formation as biomarkers for selecting, predicting and monitoring CRC patients showing sensitivity to the action of EGFR inhibitors to benefit from the combination therapy of EGFR and HER2 inhibitors.
  • Expert opinion: To assess the clinical applicability of this invention, further studies are needed since the conclusions are derived solely based on the data obtained from only one CRC cell line (Lim1215).
  • [MeSH-minor] Humans. Mitogen-Activated Protein Kinase Kinases / antagonists & inhibitors. Patents as Topic. Receptor, Epidermal Growth Factor / antagonists & inhibitors. Receptor, ErbB-2 / antagonists & inhibitors. Receptor, ErbB-3 / antagonists & inhibitors

  • Genetic Alliance. consumer health - Colorectal Cancer.
  • MedlinePlus Health Information. consumer health - Colorectal Cancer.
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28366103.001).
  • [ISSN] 1744-7674
  • [Journal-full-title] Expert opinion on therapeutic patents
  • [ISO-abbreviation] Expert Opin Ther Pat
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Chemical-registry-number] EC 2.7.10.1 / Receptor, Epidermal Growth Factor; EC 2.7.10.1 / Receptor, ErbB-2; EC 2.7.10.1 / Receptor, ErbB-3; EC 2.7.12.2 / Mitogen-Activated Protein Kinase Kinases
  • [Keywords] NOTNLM ; Biomarkers / EGFR inhibitors / colorectal cancer / combination therapy / monoclonal antibodies
  •  go-up   go-down


52. Baranyai Z, Krátký M, Vosátka R, Szabó E, Senoner Z, Dávid S, Stolaříková J, Vinšová J, Bősze S: In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur J Med Chem; 2017 Jun 16;133:152-173

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy.
  • In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017. Published by Elsevier Masson SAS.
  • (PMID = 28384546.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Keywords] NOTNLM ; Antimycobacterial activity / Cellular uptake / Fatty acid side chain / Intracellular bacteria / Salicylanilide / Tuftsin based carrier
  •  go-up   go-down


53. Deng T, Peng Y, Zhang R, Wang J, Zhang J, Gu Y, Huang D, Deng D: Water-Solubilizing Hydrophobic ZnAgInSe/ZnS QDs with Tumor-Targeted cRGD-Sulfobetaine-PIMA-Histamine Ligands via a Self-Assembly Strategy for Bioimaging. ACS Appl Mater Interfaces; 2017 Apr 05;9(13):11405-11414

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Exploring the organic-to-aqueous phase transfer of quantum dots (QDs) is significant for achieving their versatile applications in biomedical fields.
  • Herein, the new highly fluorescent tumor-targeted QDs-clusters consisting of ZnAgInSe/ZnS (ZAISe/ZnS) QDs and sulfobetaine-PIMA-histamine (SPH) polymer with the α<sub>ν</sub>β<sub>3</sub> integrin receptor cyclic RGD (c-RGD) were developed via ligand exchange and an accompanying self-assembly process.
  • In the meantime, those clusters also recognized and enriched the cell surface when cocultured with the α<sub>ν</sub>β<sub>3</sub> integrin receptor overexpressed malignant cells (U87MG tumor).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28293947.001).
  • [ISSN] 1944-8252
  • [Journal-full-title] ACS applied materials & interfaces
  • [ISO-abbreviation] ACS Appl Mater Interfaces
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; QDs-clusters / optical imaging / quaternary quantum dots / self-assembly / tumor targeting polymer
  •  go-up   go-down


54. Chubanov V, Ferioli S, Gudermann T: Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium; 2017 Mar 14;

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain.
  • Genetic inactivation of this bi-functional protein revealed its crucial role in Ca<sup>2+</sup> signalling, Mg<sup>2+</sup> metabolism, immune responses, cell motility, proliferation and differentiation.
  • Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Ltd. All rights reserved.
  • (PMID = 28356194.001).
  • [ISSN] 1532-1991
  • [Journal-full-title] Cell calcium
  • [ISO-abbreviation] Cell Calcium
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] Netherlands
  • [Keywords] NOTNLM ; Calcium / Magnesium / TRP channel / TRPM6 / TRPM7 / α-kinase
  •  go-up   go-down


55. García-Jiménez MJ, Gil-Caballero S, Canales Á, Jiménez-Barbero J, de Paz JL, Nieto PM: Interactions between a Heparin Trisaccharide Library and FGF-1 Analyzed by NMR Methods. Int J Mol Sci; 2017 Jun 17;18(6)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • FGF-1 is a potent mitogen that, by interacting simultaneously with Heparan Sulfate Glycosaminoglycan HSGAG and the extracellular domains of its membrane receptor (FGFR), generates an intracellular signal that finally leads to cell division.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cell. 1991 Feb 22;64(4):841-8 [1847668.001]
  • [Cites] Chembiochem. 2001 Sep 3;2(9):673-85 [11828504.001]
  • [Cites] Curr Biol. 1999 Nov 18;9(22):1343-6 [10574766.001]
  • [Cites] J Med Chem. 2014 Jun 12;57(11):4511-20 [24786387.001]
  • [Cites] J Am Chem Soc. 2008 Mar 12;130(10):3157-68 [18278916.001]
  • [Cites] Biochem J. 1993 Aug 1;293 ( Pt 3):849-58 [8352752.001]
  • [Cites] J Am Chem Soc. 2012 Dec 26;134(51):20722-7 [23240683.001]
  • [Cites] J Biol Chem. 1993 Nov 15;268(32):23898-905 [8226930.001]
  • [Cites] J Biol Chem. 2010 Aug 20;285(34):26628-40 [20547770.001]
  • [Cites] Biochem Biophys Res Commun. 2002 Mar 22;292(1):222-30 [11890696.001]
  • [Cites] Org Biomol Chem. 2013 Dec 21;11(47):8269-75 [24178304.001]
  • [Cites] Cell. 2000 May 12;101(4):413-24 [10830168.001]
  • [Cites] Chemistry. 2012 Dec 14;18(51):16319-31 [23143902.001]
  • [Cites] Cytokine Growth Factor Rev. 2005 Apr;16(2):139-49 [15863030.001]
  • [Cites] Glycobiology. 2013 Nov;23(11):1220-9 [23903025.001]
  • [Cites] Biochem J. 1997 Nov 15;328 ( Pt 1):51-61 [9359833.001]
  • [Cites] Chem Soc Rev. 2008 Jan;37(1):19-28 [18197330.001]
  • [Cites] J Am Chem Soc. 2004 Apr 7;126(13):4453-60 [15053636.001]
  • [Cites] J Am Chem Soc. 2015 Apr 1;137(12):4100-10 [25747117.001]
  • [Cites] Chemistry. 2010 Jul 12;16(26):7803-12 [20496354.001]
  • [Cites] Eur Biophys J. 2011 Dec;40(12):1357-69 [21947507.001]
  • [Cites] Org Biomol Chem. 2013 Jun 7;11(21):3510-25 [23595496.001]
  • [Cites] Org Biomol Chem. 2003 Jul 7;1(13):2253-66 [12945695.001]
  • [Cites] Trends Cell Biol. 2001 Feb;11(2):75-82 [11166215.001]
  • [Cites] Nat Rev Drug Discov. 2009 Mar;8(3):235-53 [19247306.001]
  • [Cites] Nature. 1998 Jun 25;393(6687):812-7 [9655399.001]
  • [Cites] Methods Mol Biol. 2015;1273:475-87 [25753726.001]
  • [Cites] Mol Cell. 2000 Sep;6(3):743-50 [11030354.001]
  • [Cites] J Biol Chem. 2002 Aug 23;277(34):30567-73 [12058038.001]
  • [Cites] J Biol Chem. 2010 Aug 27;285(35):26842-51 [20576609.001]
  • [Cites] Science. 1995 Apr 21;268(5209):432-6 [7536345.001]
  • [Cites] J Magn Reson. 2002 Mar;155(1):106-18 [11945039.001]
  • [Cites] Chembiochem. 2004 Jan 3;5(1):55-61 [14695513.001]
  • [Cites] FEBS J. 2006 Oct;273(20):4716-27 [16995857.001]
  • [Cites] Glycobiology. 2014 Nov;24(11):1004-9 [25015527.001]
  • (PMID = 28629128.001).
  • [ISSN] 1422-0067
  • [Journal-full-title] International journal of molecular sciences
  • [ISO-abbreviation] Int J Mol Sci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; FGF-1 / NMR / STD-NMR / transient complexes
  •  go-up   go-down


56. Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF: Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal; 2017 Mar 21;10(471)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation.
  • Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs).
  • The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family.
  • We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and β-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration.
  • In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling.
  • We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4.
  • The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition.
  • Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017, American Association for the Advancement of Science.
  • (PMID = 28325822.001).
  • [ISSN] 1937-9145
  • [Journal-full-title] Science signaling
  • [ISO-abbreviation] Sci Signal
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


57. Zhang L, Song J, Bai T, Qian W, Hou XH: Stress induces more serious barrier dysfunction in follicle-associated epithelium than villus epithelium involving mast cells and protease-activated receptor-2. Sci Rep; 2017 Jul 10;7(1):4950

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Stress induces more serious barrier dysfunction in follicle-associated epithelium than villus epithelium involving mast cells and protease-activated receptor-2.
  • Psychological stress has been associated with intestinal epithelial hyperpermeability, the basic process in various functional and organic bowel diseases.
  • Moreover, WAS upregulated the expression of mast cell tryptase and protease-activated receptor-2 (PAR2), which positively correlated with epithelial conductance.
  • Mast cell stabilizer cromolyn sodium obviously alleviated the barrier disruption induced by WAS in vivo and CRF in vitro.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Plast Reconstr Surg. 2000 Feb;105(2):654-9 [10697173.001]
  • [Cites] Psychoneuroendocrinology. 2008 Oct;33(9):1248-56 [18691825.001]
  • [Cites] J Neurogastroenterol Motil. 2015 Mar 30;21(2):236-46 [25843076.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2013 Sep 15;305(6):G418-26 [23868412.001]
  • [Cites] World J Gastroenterol. 2014 Oct 21;20(39):14420-9 [25339828.001]
  • [Cites] Gut Microbes. 2014 May-Jun;5(3):430-6 [25184834.001]
  • [Cites] Brain Behav Immun. 2010 Oct;24(7):1166-75 [20600818.001]
  • [Cites] Ann N Y Acad Sci. 2006 Aug;1072:218-32 [17057202.001]
  • [Cites] J Neurogastroenterol Motil. 2016 Apr 30;22(2):181-92 [26755686.001]
  • [Cites] Semin Immunopathol. 2012 Jan;34(1):133-49 [21971685.001]
  • [Cites] Adv Exp Med Biol. 2014;817:135-53 [24997032.001]
  • [Cites] Am J Pathol. 2016 May;186(5):1166-79 [26948422.001]
  • [Cites] Auton Neurosci. 2010 Feb 16;153(1-2):99-105 [19716349.001]
  • [Cites] Gut. 2004 Apr;53(4):494-500 [15016742.001]
  • [Cites] Gastroenterology. 1991 May;100(5 Pt 1):1172-9 [2013366.001]
  • [Cites] Trends Immunol. 2013 Apr;34(4):155-61 [23083727.001]
  • [Cites] Neurogastroenterol Motil. 2016 Mar;28(3):423-31 [26670784.001]
  • [Cites] Neurogastroenterol Motil. 2013 Jun;25(6):e406-17 [23600853.001]
  • [Cites] J Physiol Pharmacol. 2009 Dec;60 Suppl 7:33-46 [20388944.001]
  • [Cites] Biochim Biophys Acta. 2012 Jan;1822(1):85-92 [21704703.001]
  • [Cites] J Neurogastroenterol Motil. 2015 Jan 1;21(1):33-50 [25537677.001]
  • [Cites] J Comp Physiol B. 2010 Apr;180(4):591-8 [20049600.001]
  • [Cites] Gastroenterology. 2000 Nov;119(5):1276-85 [11054385.001]
  • [Cites] Front Cell Neurosci. 2015 Oct 14;9:392 [26528128.001]
  • [Cites] Inflamm Bowel Dis. 2014 Dec;20(12):2394-404 [25222662.001]
  • [Cites] J Clin Pathol. 2005 Jun;58(6):568-72 [15917403.001]
  • [Cites] Dig Dis Sci. 2002 Jan;47(1):208-15 [11852879.001]
  • [Cites] Ann N Y Acad Sci. 2012 Jul;1258:125-34 [22731725.001]
  • [Cites] Gut. 2014 May;63(5):744-52 [23878165.001]
  • [Cites] World J Gastroenterol. 2007 Oct 14;13(38):5139-46 [17876882.001]
  • [Cites] J Dig Dis. 2015 Apr;16(4):186-96 [25565566.001]
  • [Cites] Gut. 2014 Aug;63(8):1293-9 [24153250.001]
  • [Cites] Sci Rep. 2016 Jan 18;6:19399 [26775847.001]
  • [Cites] PLoS One. 2012;7(6):e39935 [22768175.001]
  • [Cites] Gut. 2016 Jan;65(1):155-68 [26194403.001]
  • [Cites] Neurogastroenterol Motil. 2010 Jul;22(7):770-8, e221-2 [20149111.001]
  • (PMID = 28694438.001).
  • [ISSN] 2045-2322
  • [Journal-full-title] Scientific reports
  • [ISO-abbreviation] Sci Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  •  go-up   go-down


58. Wang X, Zheng L, Wu J, Tang B, Zhang M, Zhu D, Lin X: Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease. Mol Med Rep; 2017 Jun;15(6):3459-3466
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease.
  • The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin.
  • The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Alcohol. 2000 Jul;21(3):251-7 [11091029.001]
  • [Cites] Hepatology. 2005 Aug;42(2):420-30 [15986414.001]
  • [Cites] Eur J Pharmacol. 2009 Jun 24;613(1-3):119-27 [19358839.001]
  • [Cites] Drug Metab Dispos. 2014 Apr;42(4):561-5 [24459177.001]
  • [Cites] Gut. 1981 Dec;22(12):992-6 [6119277.001]
  • [Cites] Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4156-61 [12644704.001]
  • [Cites] Pediatr Res. 2009 Oct;66(4):380-5 [19581828.001]
  • [Cites] Toxicol Sci. 2014 Jun;139(2):501-11 [24690595.001]
  • [Cites] Gastroenterology. 2001 Dec;121(6):1473-84 [11729126.001]
  • [Cites] Trends Pharmacol Sci. 2012 Feb;33(2):100-8 [22130008.001]
  • [Cites] Biochem Biophys Res Commun. 2014 Jan 3;443(1):68-73 [24269813.001]
  • [Cites] Protein Cell. 2014 Feb;5(2):113-23 [24474196.001]
  • [Cites] Adv Drug Deliv Rev. 2010 Oct 30;62(13):1238-49 [20727377.001]
  • [Cites] AAPS J. 2012 Dec;14(4):883-94 [22961390.001]
  • [Cites] Histochem Cell Biol. 2007 May;127(5):503-12 [17384956.001]
  • [Cites] Lab Invest. 2011 Aug;91(8):1136-45 [21519326.001]
  • [Cites] J Pharmacol Exp Ther. 2013 Oct;347(1):136-44 [23929842.001]
  • [Cites] Gastroenterology. 2014 Jun;146(7):1625-38 [24704527.001]
  • [Cites] J Clin Invest. 2010 Aug;120(8):2942-52 [20644253.001]
  • [Cites] Biochim Biophys Acta. 2007 Mar;1773(3):283-308 [17291602.001]
  • [Cites] Hepatology. 2004 Oct;40(4):951-60 [15382119.001]
  • [Cites] J Gastroenterol Hepatol. 2013 Aug;28 Suppl 1:77-84 [23855300.001]
  • [Cites] J Biol Chem. 1966 Feb 10;241(3):669-72 [5908133.001]
  • [Cites] Hepatology. 2005 Mar;41(3):497-505 [15726644.001]
  • [Cites] Indian J Clin Biochem. 2014 Jan;29(1):79-83 [24478554.001]
  • [Cites] Hepatology. 2001 May;33(5):1232-8 [11343253.001]
  • [Cites] Metabolism. 1994 Mar;43(3):348-56 [8139483.001]
  • [Cites] Drug Metab Dispos. 2007 Oct;35(10 ):1806-15 [17627975.001]
  • [Cites] J Biol Chem. 2009 Sep 18;284(38):25984-92 [19617349.001]
  • [Cites] Hepatology. 2001 Mar;33(3):633-46 [11230744.001]
  • [Cites] Toxicol Lett. 2012 Aug 3;212(3):288-97 [22698814.001]
  • (PMID = 28393244.001).
  • [ISSN] 1791-3004
  • [Journal-full-title] Molecular medicine reports
  • [ISO-abbreviation] Mol Med Rep
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Greece
  •  go-up   go-down


59. Harkat M, Peverini L, Cerdan AH, Dunning K, Beudez J, Martz A, Calimet N, Specht A, Cecchini M, Chataigneau T, Grutter T: On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proc Natl Acad Sci U S A; 2017 May 09;114(19):E3786-E3795

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] On the permeation of large organic cations through the pore of ATP-gated P2X receptors.
  • Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Neurosci. 2012 Mar 21;32(12 ):4284-96 [22442090.001]
  • [Cites] J Gen Physiol. 2002 Aug;120(2):119-31 [12149275.001]
  • [Cites] J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 [23341755.001]
  • [Cites] Mol Neurobiol. 2007 Oct;36(2):165-83 [17952660.001]
  • [Cites] Mol Pharmacol. 2013 Apr;83(4):759-69 [23253448.001]
  • [Cites] Biophys J. 2008 Nov 1;95(9):4205-16 [18641071.001]
  • [Cites] J Gen Physiol. 1999 May;113(5):695-720 [10228183.001]
  • [Cites] J Mol Graph. 1996 Dec;14(6):354-60, 376 [9195488.001]
  • [Cites] Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):521-6 [24367083.001]
  • [Cites] Nat Neurosci. 2015 Nov;18(11):1577-83 [26389841.001]
  • [Cites] Nature. 2014 May 15;509(7500):310-7 [24828189.001]
  • [Cites] Nat Med. 2016 Oct;22(10 ):1151-1159 [27595323.001]
  • [Cites] Pharmacol Res. 2016 Oct;112:99-118 [27015893.001]
  • [Cites] J Physiol. 2004 Jul 1;558(Pt 1):31-43 [15107474.001]
  • [Cites] J Comput Chem. 2010 Mar;31(4):671-90 [19575467.001]
  • [Cites] Neuropharmacology. 2003 Mar;44(3):403-12 [12604087.001]
  • [Cites] Neuropharmacology. 2016 May;104:18-30 [26231831.001]
  • [Cites] Biophys Chem. 1984 May;19(3):245-53 [17005142.001]
  • [Cites] Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12063-8 [18689682.001]
  • [Cites] Elife. 2016 Jan 25;5:e11050 [26808983.001]
  • [Cites] Nat Neurosci. 1999 Apr;2(4):315-21 [10204537.001]
  • [Cites] Nature. 2009 Jul 30;460(7255):592-8 [19641588.001]
  • [Cites] Cell Rep. 2016 Feb 2;14 (4):932-44 [26804916.001]
  • [Cites] J Gen Physiol. 2008 Nov;132(5):563-73 [18852304.001]
  • [Cites] Nature. 2016 Oct 6;538(7623):66-71 [27626375.001]
  • [Cites] Front Cell Neurosci. 2013 Nov 14;7:215 [24312007.001]
  • [Cites] EMBO J. 2006 Nov 1;25(21):5071-82 [17036048.001]
  • [Cites] J Biol Chem. 2010 May 21;285(21):15805-15 [20308075.001]
  • [Cites] PLoS Biol. 2009 May;7(5):e1000103 [19419241.001]
  • [Cites] Front Pharmacol. 2016 Jan 29;7:5 [26858647.001]
  • [Cites] J Comput Chem. 2005 Dec;26(16):1781-802 [16222654.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2228-33 [23345450.001]
  • [Cites] Biophys J. 2007 Aug 1;93(3):846-58 [17483156.001]
  • [Cites] Nat Neurosci. 1999 Apr;2(4):322-30 [10204538.001]
  • [Cites] J Biol Chem. 2005 Feb 18;280(7):6118-29 [15556949.001]
  • [Cites] J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [8744570.001]
  • [Cites] Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):E4045-54 [24082111.001]
  • [Cites] Neuron. 2016 Oct 5;92 (1):100-113 [27667006.001]
  • [Cites] Neurosci Lett. 1996 Jul 19;212(3):212-4 [8843110.001]
  • [Cites] J Membr Biol. 1999 Dec 1;172(3):215-23 [10568791.001]
  • [Cites] Trends Pharmacol Sci. 2010 May;31(5):229-37 [20227116.001]
  • [Cites] J Neurosci. 2013 Feb 20;33(8):3557-66 [23426683.001]
  • [Cites] Nature. 2012 May 10;485(7397):207-12 [22535247.001]
  • [Cites] Nat Med. 2012 Mar 25;18(4):595-9 [22447075.001]
  • [Cites] Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2156-E2165 [28235784.001]
  • [Cites] Elife. 2016 Dec 09;5:null [27935479.001]
  • [Cites] J Neurosci. 2004 Nov 17;24(46):10475-87 [15548662.001]
  • [Cites] Nat Neurosci. 2008 Aug;11(8):883-7 [18587390.001]
  • [Cites] J Chem Theory Comput. 2009 Jun 9;5(6):1632-9 [26609855.001]
  • [Cites] Neuron. 2012 Oct 4;76(1):51-69 [23040806.001]
  • [Cites] Am J Physiol Cell Physiol. 2005 Nov;289(5):C1295-302 [16093280.001]
  • [Cites] J Gen Physiol. 2012 May;139(5):333-48 [22547664.001]
  • (PMID = 28442564.001).
  • [ISSN] 1091-6490
  • [Journal-full-title] Proceedings of the National Academy of Sciences of the United States of America
  • [ISO-abbreviation] Proc. Natl. Acad. Sci. U.S.A.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; YO-PRO uptake / photoswitches / pore dilation / purinergic receptor / spermidine
  •  go-up   go-down


60. Zackova Suchanova J, Neburkova J, Spanielova H, Forstova J, Cigler P: Retargeting Polyomavirus-Like Particles to Cancer Cells by Chemical Modification of Capsid Surface. Bioconjug Chem; 2017 Feb 15;28(2):307-313
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here, we describe a chemical approach to retarget PVLPs to cancer cells displaying abnormally high levels of transferrin receptor.
  • [MeSH-minor] Biological Transport. Cell Line, Tumor. Humans. Models, Molecular. Molecular Conformation. Surface Properties

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28035816.001).
  • [ISSN] 1520-4812
  • [Journal-full-title] Bioconjugate chemistry
  • [ISO-abbreviation] Bioconjug. Chem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Chemical-registry-number] 0 / Drug Carriers
  •  go-up   go-down


61. Rush MD, Walker EM, Prehna G, Burton T, van Breemen RB: Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-α. J Am Soc Mass Spectrom; 2017 Mar;28(3):479-485

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Development of a Magnetic Microbead Affinity Selection Screen (MagMASS) Using Mass Spectrometry for Ligands to the Retinoid X Receptor-α.
  • The screening process involves immobilization of a target protein on a magnetic microbead using a variety of possible chemistries, incubation with mixtures of molecules containing possible ligands, a washing step that removes non-bound compounds while a magnetic field retains the beads in the microtiter well, and an organic solvent release step followed by LC-MS analysis.
  • Using retinoid X receptor-α (RXRα) as an example, which is a nuclear receptor and target for anti-inflammation therapy as well as cancer treatment and prevention, a MagMASS assay was developed and compared with an existing screening assay, pulsed ultrafiltration (PUF)-MS.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Med Chem. 1995 Aug 4;38(16):3146-55 [7636877.001]
  • [Cites] Cell. 1992 Jan 24;68(2):397-406 [1310260.001]
  • [Cites] J Med Chem. 2009 Oct 8;52(19):5950-66 [19791803.001]
  • [Cites] J Am Soc Mass Spectrom. 2005 Feb;16(2):271-9 [15694777.001]
  • [Cites] Anal Chem. 2010 Dec 1;82(23):9850-7 [21067198.001]
  • [Cites] Biochemistry. 2011 Jan 11;50(1):93-105 [21049972.001]
  • [Cites] J Nat Prod. 2012 Mar 23;75(3):311-35 [22316239.001]
  • [Cites] Biochem Biophys Res Commun. 2014 Sep 26;452(3):554-9 [25172665.001]
  • [Cites] Anal Chem. 1997 Jun 1;69(11):2159-64 [9183179.001]
  • [Cites] J Chem Biol. 2013 Aug 29;6(4):185-205 [24432134.001]
  • [Cites] Arch Dermatol. 2001 May;137(5):581-93 [11346336.001]
  • [Cites] Biochemistry. 1998 Jul 28;37(30):10691-700 [9692959.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4272-7 [19255444.001]
  • [Cites] Trends Genet. 2001 Oct;17(10):554-6 [11585645.001]
  • [Cites] Int J Mol Sci. 2013 Jan 10;14(1):1232-77 [23306150.001]
  • [Cites] Comb Chem High Throughput Screen. 1998 Apr;1(1):47-55 [10499129.001]
  • [Cites] Mol Divers. 2004;8(1):9-19 [14964784.001]
  • [Cites] Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):30-4 [8380496.001]
  • [Cites] Nature. 2008 Nov 20;456(7220):350-6 [19043829.001]
  • [Cites] Anal Chem. 2002 Aug 15;74(16):3963-71 [12199561.001]
  • [Cites] Curr Protoc Pharmacol. 2009 Sep;Chapter 9:Unit 9.11 [22294405.001]
  • [Cites] Curr Opin Cell Biol. 1998 Jun;10(3):384-91 [9640540.001]
  • [Cites] Mol Cell. 2000 Feb;5(2):289-98 [10882070.001]
  • [Cites] Comb Chem High Throughput Screen. 2008 Jan;11(1):1-6 [18220538.001]
  • [Cites] J Med Chem. 2013 Mar 28;56(6):2581-605 [23472886.001]
  • (PMID = 27966173.001).
  • [ISSN] 1879-1123
  • [Journal-full-title] Journal of the American Society for Mass Spectrometry
  • [ISO-abbreviation] J. Am. Soc. Mass Spectrom.
  • [Language] eng
  • [Grant] United States / NCCIH NIH HHS / AT / P50 AT000155; United States / NCCIH NIH HHS / AT / R01 AT007659; United States / NCCIH NIH HHS / AT / T32 AT007533
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Affinity selection screening / MS-based screening / Magnetic microbeads / Natural products / Pulsed ultrafiltration / Retinoid X receptor-α (RXRα)
  •  go-up   go-down


62. Sapudom J, Ullm F, Martin S, Kalbitzer L, Naab J, Möller S, Schnabelrauch M, Anderegg U, Schmidt S, Pompe T: Molecular weight specific impact of soluble and immobilized hyaluronan on CD44 expressing melanoma cells in 3D collagen matrices. Acta Biomater; 2017 Mar 01;50:259-270
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • : Hyaluronan (HA) and its principal receptor CD44 are known to be involved in regulating tumor cell dissemination and metastasis.
  • To elucidate HA dependent tumor cell behavior, BRO melanoma cell lines with and without CD44 receptor expression were used for in vitro cell experiments.
  • We demonstrated that only soluble LMW-HA promoted cell proliferation in a CD44 dependent manner, while HMW-HA and immobilized LMW-HA did not.
  • Furthermore, an enhanced cell invasion was found only for immobilized LMW-HA.
  • Both findings correlated with a very strong and specific adhesive interaction of LMW-HA and CD44+ cells quantified in single cell adhesion measurements using soft colloidal force spectroscopy.
  • Mimicking in that way important in vivo features of tumor microenvironments, we found that only low molecular weight HA (LMW-HA) in soluble form promoted proliferation of a melanoma cell line (BRO), while it enhanced cell invasion in bound form.
  • The molecular weight specificity of LMW-HA was verified to be CD44 receptor dependent and was correlated to adhesive ligand-receptor interactions in quantitative colloidal force spectroscopy at single cell level.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  • (PMID = 27965172.001).
  • [ISSN] 1878-7568
  • [Journal-full-title] Acta biomaterialia
  • [ISO-abbreviation] Acta Biomater
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; CD44 receptor / Collagen / Extracellular matrix / Hyaluronan / Melanoma cells
  •  go-up   go-down


63. Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath K, Díaz Díaz D, Banerjee R: Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. J Am Chem Soc; 2017 Mar 29;139(12):4513-4520

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification.
  • Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability.
  • In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA).
  • Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28256830.001).
  • [ISSN] 1520-5126
  • [Journal-full-title] Journal of the American Chemical Society
  • [ISO-abbreviation] J. Am. Chem. Soc.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


64. Estrela GR, Wasinski F, Felizardo RJ, Souza LL, Câmara NO, Bader M, Araujo RC: MATE-1 modulation by kinin B1 receptor enhances cisplatin efflux from renal cells. Mol Cell Biochem; 2017 Apr;428(1-2):101-108
Hazardous Substances Data Bank. CIS-DIAMINEDICHLOROPLATINUM .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] MATE-1 modulation by kinin B1 receptor enhances cisplatin efflux from renal cells.
  • Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells.
  • Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury.
  • To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin.
  • Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1.
  • Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1.
  • Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue.
  • Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.
  • [MeSH-major] Acute Kidney Injury / prevention & control. Bradykinin B1 Receptor Antagonists / pharmacology. Cisplatin / pharmacokinetics. Organic Cation Transport Proteins / genetics. Receptor, Bradykinin B1 / genetics

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28161805.001).
  • [ISSN] 1573-4919
  • [Journal-full-title] Molecular and cellular biochemistry
  • [ISO-abbreviation] Mol. Cell. Biochem.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Netherlands
  • [Chemical-registry-number] 0 / Bradykinin B1 Receptor Antagonists; 0 / MATE1 protein, mouse; 0 / Organic Cation Transport Proteins; 0 / Receptor, Bradykinin B1; Q20Q21Q62J / Cisplatin
  • [Keywords] NOTNLM ; Cisplatin nephrotoxicity / Kinins / Organic transporters
  •  go-up   go-down


65. Karpenko IA, Niko Y, Yakubovskyi VP, Gerasov AO, Bonnet D, Kovtun YP, Klymchenko AS: Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions. J Mater Chem C Mater Opt Electron Devices; 2016 Apr 14;4(14):3002-3009

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Push-pull dioxaborine as fluorescent molecular rotor: far-red fluorogenic probe for ligand-receptor interactions.
  • Indeed, in organic solvents, it shows strong red shifts in the absorption and fluorescence spectra upon increase in solvent polarity, typical for push-pull dyes.
  • Its reactive carboxy derivative has been successfully grafted to carbetocin, a ligand of the oxytocin G protein-coupled receptor.
  • It targets specifically the oxytocin receptor at the cell surface, which enables receptor imaging with excellent signal-to-background ratio (>130).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Chem Commun (Camb). 2015 Feb 18;51(14):2960-3 [25594279.001]
  • [Cites] J Lipid Res. 1985 Jul;26(7):781-9 [4031658.001]
  • [Cites] Angew Chem Int Ed Engl. 2013 Feb 25;52(9):2408-10 [23339134.001]
  • [Cites] Chemistry. 2013 Jul 22;19(30):9760-5 [23744761.001]
  • [Cites] Chem Commun (Camb). 2015 Dec 14;51(96):17136-9 [26455447.001]
  • [Cites] Chembiochem. 2014 Feb 10;15(3):359-63 [24449564.001]
  • [Cites] Pharm Res. 2008 Jul;25(7):1487-99 [18172579.001]
  • [Cites] ACS Chem Biol. 2014 Mar 21;9(3):606-12 [24471525.001]
  • [Cites] J Phys Chem B. 2008 Dec 11;112(49):15893-902 [19367903.001]
  • [Cites] Prog Mol Biol Transl Sci. 2013;113:1-34 [23244787.001]
  • [Cites] J Am Chem Soc. 2010 Apr 7;132(13):4907-16 [20225874.001]
  • [Cites] Biophys J. 2009 May 6;96(9):3461-70 [19413953.001]
  • [Cites] Phys Chem Chem Phys. 2012 Feb 21;14(7):2292-300 [22237699.001]
  • [Cites] Photochem Photobiol Sci. 2014 Oct;13(10):1397-401 [25093970.001]
  • [Cites] J Am Chem Soc. 2008 Apr 2;130(13):4246-7 [18331041.001]
  • [Cites] Trends Biotechnol. 2010 Feb;28(2):73-83 [19962774.001]
  • [Cites] Phys Chem Chem Phys. 2012 Oct 5;14(37):12671-86 [22806312.001]
  • [Cites] J Am Chem Soc. 2008 Mar 19;130(11):3238-9 [18302371.001]
  • [Cites] J Phys Chem A. 2007 Sep 20;111(37):8934-41 [17718454.001]
  • [Cites] Org Biomol Chem. 2007 Jun 7;5(11):1669-78 [17520133.001]
  • [Cites] Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2290-310 [24482312.001]
  • [Cites] J Phys Chem Lett. 2012 Apr 19;3(8):1011-6 [26286565.001]
  • [Cites] J Am Chem Soc. 2008 May 28;130(21):6672-3 [18457396.001]
  • [Cites] Science. 2011 Jul 29;333(6042):642-6 [21798953.001]
  • [Cites] J Phys Chem A. 2011 Mar 24;115(11):2160-8 [21361264.001]
  • [Cites] J Am Chem Soc. 2015 Jan 14;137(1):405-12 [25506627.001]
  • [Cites] Chem Rev. 2014 Jan 8;114(1):590-659 [24024656.001]
  • [Cites] Angew Chem Int Ed Engl. 2009;48(35):6480-4 [19637175.001]
  • [Cites] Prog Mol Biol Transl Sci. 2013;113:35-58 [23244788.001]
  • [Cites] Chem Rev. 2003 Oct;103(10 ):3899-4032 [14531716.001]
  • [Cites] Nat Chem Biol. 2007 Apr;3(4):222-8 [17351628.001]
  • [Cites] Chem Commun (Camb). 2014 May 25;50(40):5282-4 [24266030.001]
  • [Cites] J Biol Eng. 2010 Sep 15;4:11 [20843326.001]
  • [Cites] Biochim Biophys Acta. 2010 Jul;1804(7):1405-12 [20399286.001]
  • [Cites] Curr Opin Chem Biol. 2015 Aug;27:64-74 [26117808.001]
  • [Cites] J Org Chem. 2015 Nov 6;80(21):10794-805 [26468685.001]
  • [Cites] Nat Biotechnol. 2008 Feb;26(2):235-40 [18157118.001]
  • [Cites] Nat Methods. 2014 Jul;11(7):731-3 [24859753.001]
  • [Cites] Biochim Biophys Acta. 2008 Apr;1778(4):1148-53 [18258179.001]
  • (PMID = 28491320.001).
  • [ISSN] 2050-7526
  • [Journal-full-title] Journal of materials chemistry. C, Materials for optical and electronic devices
  • [ISO-abbreviation] J Mater Chem C Mater Opt Electron Devices
  • [Language] eng
  • [Grant] International / European Research Council / / 648528
  • [Publication-type] Journal Article
  •  go-up   go-down


66. Gilligan LC, Gondal A, Tang V, Hussain MT, Arvaniti A, Hewitt AM, Foster PA: Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy. Front Pharmacol; 2017;8:103

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E<sub>1</sub>S.
  • STS activity is significantly higher in CRC cell lysate, suggesting the importance of E<sub>1</sub>S transport in intracellular STS substrate availability.
  • As E<sub>1</sub>S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter.
  • All four CRC cell lines rapidly transported E<sub>1</sub>S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP.
  • Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells.
  • Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E<sub>2</sub>) and G1, a GPER agonist, significantly (<i>p</i> < 0.01) increased STS activity.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Cancer Res. 2009 Feb 1;69(3):914-22 [19141651.001]
  • [Cites] J Clin Endocrinol Metab. 1996 Apr;81(4):1460-4 [8636351.001]
  • [Cites] J Steroid Biochem Mol Biol. 2015 Jun;150:54-63 [25817828.001]
  • [Cites] Eur J Cancer. 2003 Jun;39(9):1251-8 [12763213.001]
  • [Cites] Nat Chem Biol. 2009 Jun;5(6):421-7 [19430488.001]
  • [Cites] Clin Cancer Res. 2006 Sep 15;12(18):5543-9 [17000691.001]
  • [Cites] J Hepatol. 2016 Jan;64(1):44-52 [26220752.001]
  • [Cites] Biomed Pharmacother. 2015 Aug;74:233-42 [26349991.001]
  • [Cites] Hum Pathol. 2001 Sep;32(9):940-4 [11567223.001]
  • [Cites] N Engl J Med. 2004 Mar 4;350(10):991-1004 [14999111.001]
  • [Cites] Cochrane Database Syst Rev. 2005 Jul 20;(3):CD004143 [16034922.001]
  • [Cites] Xenobiotica. 2006 Oct-Nov;36(10-11):963-88 [17118916.001]
  • [Cites] Prostate. 2006 Jun 15;66(9):1005-12 [16541422.001]
  • [Cites] Br J Pharmacol. 2012 Mar;165(5):1260-87 [22013971.001]
  • [Cites] Oncologist. 2007 Apr;12(4):370-4 [17470679.001]
  • [Cites] Endocr Rev. 2015 Oct;36(5):526-63 [26213785.001]
  • [Cites] J Clin Endocrinol Metab. 2010 Jun;95(6):2689-98 [20371658.001]
  • [Cites] Neurogastroenterol Motil. 2016 Mar;28(3):432-42 [26661936.001]
  • [Cites] J Steroid Biochem Mol Biol. 1997 May;62(1):45-51 [9366497.001]
  • [Cites] J Exp Clin Cancer Res. 2010 Nov 08;29:144 [21059236.001]
  • [Cites] Int J Clin Exp Pathol. 2014 Apr 15;7(5):2238-46 [24966932.001]
  • [Cites] Mol Cell Endocrinol. 2014 May 25;389(1-2):71-83 [24530924.001]
  • [Cites] Endocrinology. 2008 Aug;149(8):4035-42 [18450955.001]
  • [Cites] Dig Dis Sci. 2002 Dec;47(12):2720-8 [12498292.001]
  • [Cites] J Biol Chem. 2012 Dec 21;287(52):43234-45 [23135268.001]
  • [Cites] Mol Cell Endocrinol. 2005 Jan 14;229(1-2):39-47 [15607527.001]
  • [Cites] Mol Endocrinol. 2002 Oct;16(10):2283-96 [12351693.001]
  • [Cites] Breast Cancer Res. 2013 Nov 29;15(6):R114 [24289103.001]
  • [Cites] PLoS One. 2011;6(5):e20372 [21625523.001]
  • [Cites] J Steroid Biochem Mol Biol. 2007 Jun-Jul;105(1-5):76-84 [17596930.001]
  • [Cites] Mol Cell Endocrinol. 2008 Feb 13;283(1-2):76-82 [18180093.001]
  • [Cites] Clin Cancer Res. 2006 Mar 1;12(5):1585-92 [16533785.001]
  • [Cites] Breast Cancer Res Treat. 2014 Jul;146(2):273-85 [24928526.001]
  • [Cites] Int J Colorectal Dis. 2013 Jun;28(6):737-49 [23319136.001]
  • [Cites] Scand J Gastroenterol. 2005 Dec;40(12):1454-61 [16293557.001]
  • [Cites] Breast Cancer Res Treat. 2008 Sep;111(1):129-38 [17914670.001]
  • [Cites] Cancer Res. 1996 Oct 1;56(19):4516-21 [8813150.001]
  • [Cites] Drug Metab Pharmacokinet. 2004 Jun;19(3):171-9 [15499184.001]
  • (PMID = 28326039.001).
  • [Journal-full-title] Frontiers in pharmacology
  • [ISO-abbreviation] Front Pharmacol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; GPER / OATP / SLCO / colorectal cancer / estrogen / steroid sulfatase / tamoxifen
  •  go-up   go-down


67. Meng W, Wang S, Yao L, Zhang N, Li D: Muscarinic Receptors Are Responsible for the Cholinergic Modulation of Projection Neurons in the Song Production Brain Nucleus RA of Zebra Finches. Front Cell Neurosci; 2017;11:51

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Our previous study showed that carbachol, a non-selective cholinergic receptor agonist, modulates the electrophysiology of RA projection neurons (PNs), indicating that cholinergic modulation of RA may play an important role in song production.
  • However, the receptor mechanisms underlying these effects are poorly understood.
  • In the present study, we investigated the electrophysiological properties of two acetylcholine receptors on the RA PNs of adult male zebra finches using <i>in vitro</i> whole-cell current clamp.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Science. 2014 Dec 12;346(6215):1256846 [25504733.001]
  • [Cites] Brain Res. 2004 Aug 20;1018(1):97-105 [15262210.001]
  • [Cites] Neurosci Lett. 2011 Oct 10;503(3):256-60 [21896311.001]
  • [Cites] J Biosci. 2004 Jun;29(2):189-200 [15286416.001]
  • [Cites] J Neurophysiol. 2010 Feb;103(2):733-45 [19939956.001]
  • [Cites] J Neurosci. 2009 May 20;29(20):6558-67 [19458226.001]
  • [Cites] Dev Neurobiol. 2016 Jan;76(1):3-18 [25864444.001]
  • [Cites] J Physiol. 1992 Apr;449:121-54 [1522506.001]
  • [Cites] BMC Neurosci. 2012 Apr 27;13:42 [22540185.001]
  • [Cites] Ann N Y Acad Sci. 2004 Jun;1016:749-77 [15313804.001]
  • [Cites] Neurosci Lett. 2015 Mar 4;589:37-41 [25596438.001]
  • [Cites] Neurosci Lett. 2011 Jan 7;487(2):234-9 [20969922.001]
  • [Cites] J Neurophysiol. 2008 Jul;100(1):8-18 [18463188.001]
  • [Cites] Neuron. 2001 Dec 6;32(5):899-910 [11738034.001]
  • [Cites] J Neurobiol. 2001 Feb 5;46(2):142-65 [11153015.001]
  • [Cites] Science. 1996 Sep 27;273(5283):1871-5 [8791594.001]
  • [Cites] J Neurosci Res. 2004 May 15;76(4):475-80 [15114619.001]
  • [Cites] J Comp Neurol. 1988 Aug 8;274(2):255-64 [3209741.001]
  • [Cites] J Neurosci. 2008 Oct 8;28(41):10370-9 [18842896.001]
  • [Cites] Nature. 2002 May 16;417(6886):351-8 [12015616.001]
  • [Cites] PLoS One. 2008;3(10):e3440 [18941504.001]
  • [Cites] J Comp Neurol. 1981 Oct 20;202(2):211-9 [7298898.001]
  • [Cites] J Comp Neurol. 1976 Feb 15;165(4):457-86 [1262540.001]
  • [Cites] Brain Behav Evol. 1994;44(4-5):265-78 [7842285.001]
  • [Cites] J Neurophysiol. 2000 Nov;84(5):2502-13 [11067993.001]
  • [Cites] J Neurophysiol. 1998 Mar;79(3):1579-82 [9497434.001]
  • [Cites] J Neurophysiol. 2010 Mar;103(3):1397-409 [20071625.001]
  • [Cites] J Neurophysiol. 2002 Dec;88(6):3315-30 [12466449.001]
  • [Cites] Neuron. 2003 Dec 18;40(6):1213-26 [14687554.001]
  • [Cites] J Neurophysiol. 1999 Jun;81(6):3007-20 [10368416.001]
  • [Cites] Neural Plast. 2016;2016:7246827 [26904300.001]
  • [Cites] Acta Neurobiol Exp (Wars). 1996;56(4):863-72 [9033122.001]
  • [Cites] PeerJ. 2014 Apr 10;2:e352 [24765586.001]
  • [Cites] J Neurophysiol. 2009 Aug;102(2):774-85 [19474169.001]
  • [Cites] Cereb Cortex. 2010 Nov;20(11):2739-48 [20181623.001]
  • [Cites] J Neurophysiol. 2014 Jan;111(2):258-72 [24155009.001]
  • [Cites] J Comp Neurol. 1990 Aug 22;298(4):431-42 [2229474.001]
  • [Cites] Neuroreport. 1999 Jan 18;10(1):165-9 [10094156.001]
  • (PMID = 28293176.001).
  • [Journal-full-title] Frontiers in cellular neuroscience
  • [ISO-abbreviation] Front Cell Neurosci
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; RA / cholinergic modulation / mAChR / nAChR / projection neuron / song premotor nucleus / zebra finch
  •  go-up   go-down


68. Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J: Toxicity of Naphthalene and Benzene on Tribollium castaneum Herbst. Int J Environ Res Public Health; 2017 Jun 21;14(6)

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Naphthalene and benzene are widely-used volatile organic compounds.
  • Real-time polymerase chain reaction (PCR) analysis revealed expression changes in genes related to oxidative stress and metabolism [Glutathione S-Transferase (Gst), and Cytochrome P450 6BQ8 (Cyp6bq8)]; reproduction and metamorphosis [Hormone receptor in 39-like protein (Hr39), Ecdysone receptor: (Ecr), and Chitin synthase 2 (Chs2)]; and neurotransmission [Histamine-gated chloride channel 2 (Hiscl2)] in insects exposed for 4 h to 70.2 µL/L naphthalene.
  • Adults exposed to benzene (80 µL/L; 4 h) overexpressed genes related to neurotransmission [GABA-gated anion channel (Rdl), Hiscl2, and GABA-gated ion channel (Grd)]; reproduction and metamorphosis [Ultraspiracle nuclear receptor (USP), Ecr; and Hr39]; and development (Chs2).

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Arch Environ Contam Toxicol. 1988 Nov;17(6):799-805 [2906531.001]
  • [Cites] Nat Chem Biol. 2006 Jun;2(6):338-45 [16699520.001]
  • [Cites] Expert Rev Mol Diagn. 2005 Mar;5(2):209-19 [15833050.001]
  • [Cites] Chem Res Toxicol. 2008 Mar;21(3):720-5 [18266326.001]
  • [Cites] Insect Biochem Mol Biol. 2011 Oct;41(10):815-22 [21742031.001]
  • [Cites] Mech Dev. 2009 Jul;126(7):563-79 [19324087.001]
  • [Cites] J Environ Sci (China). 2011;23(2):307-14 [21517006.001]
  • [Cites] Mutat Res. 2005 Aug 4;575(1-2):85-101 [15878777.001]
  • [Cites] Adv Physiol Educ. 2005 Sep;29(3):151-9 [16109794.001]
  • [Cites] BMC Evol Biol. 2006 Jan 25;6:7 [16436210.001]
  • [Cites] PLoS One. 2015 Apr 07;10(4):e0120429 [25849086.001]
  • [Cites] Anal Biochem. 2010 Apr 15;399(2):211-7 [20036209.001]
  • [Cites] Nature. 2008 Apr 24;452(7190):949-55 [18362917.001]
  • [Cites] Ecotoxicol Environ Saf. 2000 Jul;46(3):357-62 [10903834.001]
  • [Cites] Cold Spring Harb Protoc. 2009 Aug;2009(8):pdb.emo126 [20147228.001]
  • [Cites] Chemosphere. 2010 Apr;79(5):577-87 [20188393.001]
  • [Cites] Natl Toxicol Program Tech Rep Ser. 1992 Apr;410:1-172 [12621520.001]
  • [Cites] J Insect Physiol. 2010 Oct;56(10):1471-80 [20416316.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D476-9 [17090595.001]
  • [Cites] Pest Manag Sci. 2010 Dec;66(12):1324-31 [20715015.001]
  • [Cites] Exp Toxicol Pathol. 2005 Apr;56(6):377-83 [15945277.001]
  • [Cites] J Pharmacol Exp Ther. 2011 Oct;339(1):62-71 [21730012.001]
  • [Cites] Dev Comp Immunol. 2008;32(5):585-95 [17981328.001]
  • [Cites] Toxicology. 2002 Oct 30;180(1):97-105 [12324202.001]
  • [Cites] Prog Biophys Mol Biol. 2015 Jul;118(1-2):69-78 [25778758.001]
  • [Cites] J Environ Biol. 2005 Apr;26(2):157-68 [16161967.001]
  • [Cites] In Vitro Cell Dev Biol Anim. 2012 Aug;48(7):426-33 [22752637.001]
  • [Cites] Int J Environ Res Public Health. 2015 Jan 12;12(1):595-610 [25588154.001]
  • [Cites] Environ Health Perspect. 2011 May;119(5):628-34 [21147609.001]
  • [Cites] Chemosphere. 2013 Oct;93(6):1064-9 [23800590.001]
  • [Cites] PLoS One. 2012;7(2):e32288 [22359679.001]
  • (PMID = 28635673.001).
  • [ISSN] 1660-4601
  • [Journal-full-title] International journal of environmental research and public health
  • [ISO-abbreviation] Int J Environ Res Public Health
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; abnormalities / benzene / gene expression / mortality / naphthalene / naphthalin
  •  go-up   go-down


69. Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, Los Rios C, Romero A, Egea J: Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med; 2017 Mar;104:32-53

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca<sup>2+</sup> dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death.
  • Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28065781.001).
  • [ISSN] 1873-4596
  • [Journal-full-title] Free radical biology & medicine
  • [ISO-abbreviation] Free Radic. Biol. Med.
  • [Language] eng
  • [Publication-type] Journal Article; Review
  • [Publication-country] United States
  • [Keywords] NOTNLM ; Brain ischemia / Free radicals / Melatonin / Neuroprotection
  •  go-up   go-down


70. Řezníčková E, Tenora L, Pospíšilová P, Galeta J, Jorda R, Berka K, Majer P, Potáček M, Kryštof V: ALK5 kinase inhibitory activity and synthesis of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles. Eur J Med Chem; 2017 Feb 15;127:632-642

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [MeSH-minor] Cell Line, Tumor. Chemistry Techniques, Synthetic. Humans. Structure-Activity Relationship

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28135685.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Protein Kinase Inhibitors; 0 / Pyrazoles; 0 / Receptors, Transforming Growth Factor beta; EC 2.7.1.11 / TGF-beta type I receptor; EC 2.7.11.1 / Protein-Serine-Threonine Kinases
  • [Keywords] NOTNLM ; Inhibitor / Protein kinase / Substituted pyrrolo[1,2-b]pyrazoles / Transforming growth factor beta receptor I
  •  go-up   go-down


71. Cardozo T, Shmelkov E, Felsovalyi K, Swetnam J, Butler T, Malaspina D, Shmelkov SV: Chemistry-based molecular signature underlying the atypia of clozapine. Transl Psychiatry; 2017 Feb 21;7(2):e1036

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions.
  • Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine.
  • Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia.
  • These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Lancet. 1995 Feb 18;345(8947):456-7 [7853978.001]
  • [Cites] Front Physiol. 2015 Dec 18;6:371 [26733872.001]
  • [Cites] CNS Neurosci Ther. 2011 Apr;17 (2):97-103 [21143431.001]
  • [Cites] Cell Chem Biol. 2016 Jul 21;23(7):862-74 [27427232.001]
  • [Cites] Trends Neurosci. 2009 Apr;32(4):225-32 [19269047.001]
  • [Cites] J Med Chem. 2016 May 12;59(9):4326-41 [26929980.001]
  • [Cites] Nat Rev Drug Discov. 2014 Nov;13(11):813-27 [25287120.001]
  • [Cites] Nucleic Acids Res. 2013 Jan;41(Database issue):D561-5 [23175613.001]
  • [Cites] J Med Chem. 2016 Nov 23;59(22):10285-10290 [27809519.001]
  • [Cites] Nat Rev Drug Discov. 2010 Aug;9(8):628-42 [20577266.001]
  • [Cites] ACS Chem Neurosci. 2013 Jul 17;4(7):1018-25 [24047509.001]
  • [Cites] Anal Chim Acta. 2016 Feb 25;909:41-50 [26851083.001]
  • [Cites] Curr Drug Saf. 2014;9(3):163-95 [24809463.001]
  • [Cites] Drug Discov Today. 2016 Feb;21(2):288-98 [26743596.001]
  • [Cites] Genome Biol. 2009;10(11):R130 [19919682.001]
  • [Cites] Nat Prod Rep. 2015 Aug;32(8):1249-66 [26030402.001]
  • [Cites] J Chem Inf Model. 2016 Jun 27;56(6):1175-83 [27187084.001]
  • [Cites] PLoS One. 2016 Nov 9;11(11):e0165737 [27828998.001]
  • [Cites] Eur Neuropsychopharmacol. 2012 Jun;22(6):387-400 [22300864.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [15075390.001]
  • [Cites] Genes Brain Behav. 2006 Mar;5(2):113-9 [16507002.001]
  • [Cites] Mol Psychiatry. 2005 Jan;10(1):79-104 [15289815.001]
  • [Cites] Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [21948594.001]
  • [Cites] Am J Psychiatry. 2009 Jan;166(1):111; author reply 111-3 [19122018.001]
  • [Cites] Nature. 2012 Jun 10;486(7403):361-7 [22722194.001]
  • [Cites] Oncotarget. 2015 ;6(12 ):9646-56 [25991664.001]
  • [Cites] Nat Rev Drug Discov. 2007 Mar;6(3):189-201 [17330070.001]
  • [Cites] Ann N Y Acad Sci. 2011 Oct;1236:30-43 [22032400.001]
  • [Cites] Nature. 2009 Nov 12;462(7270):175-81 [19881490.001]
  • [Cites] Curr Med Res Opin. 1997;14(1):1-20 [9524789.001]
  • [Cites] Int J Neuropsychopharmacol. 2013 Nov;16(10):2131-44 [23745738.001]
  • [Cites] Cochrane Database Syst Rev. 2008 Jul 16;(3):CD005579 [18646130.001]
  • [Cites] Sci Rep. 2016 Nov 08;6:36205 [27824084.001]
  • (PMID = 28221369.001).
  • [ISSN] 2158-3188
  • [Journal-full-title] Translational psychiatry
  • [ISO-abbreviation] Transl Psychiatry
  • [Language] eng
  • [Grant] United States / NLM NIH HHS / LM / RC2 LM010994
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


72. Jouan E, Le Vée M, Denizot C, Parmentier Y, Fardel O: Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells. Pharmaceutics; 2016 Dec 28;9(1)
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP).
  • Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated.
  • HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] J Pharmacol Exp Ther. 2003 Feb;304(2):801-9 [12538836.001]
  • [Cites] Free Radic Biol Med. 2015 Nov;88(Pt B):93-100 [26117331.001]
  • [Cites] J Hepatol. 2000;32(1 Suppl):3-18 [10728790.001]
  • [Cites] Biochem Biophys Res Commun. 2004 May 7;317(3):708-16 [15081398.001]
  • [Cites] Int J Cancer. 2001 Oct 15;94(2):157-65 [11668492.001]
  • [Cites] Biochem Pharmacol. 2013 Aug 15;86(4):548-60 [23792120.001]
  • [Cites] Fundam Clin Pharmacol. 2011 Dec;25(6):743-52 [21210849.001]
  • [Cites] Carcinogenesis. 1993 Apr;14(4):781-3 [8097138.001]
  • [Cites] Toxicol In Vitro. 2013 Sep;27(6):1979-86 [23850984.001]
  • [Cites] Mol Pharmacol. 2010 Aug;78(2):175-85 [20460431.001]
  • [Cites] Hepatology. 2007 Apr;45(4):1046-55 [17393504.001]
  • [Cites] Handb Exp Pharmacol. 2011;(201):105-67 [21103969.001]
  • [Cites] FASEB J. 2006 Dec;20(14 ):2651-3 [17065227.001]
  • [Cites] J Neurosci Methods. 2009 May 15;179(2):173-8 [19428524.001]
  • [Cites] Cell Biol Toxicol. 2016 Feb;32(1):37-59 [27027780.001]
  • [Cites] Clin Pharmacol Ther. 2013 Jul;94(1):95-112 [23588315.001]
  • [Cites] Curr Drug Metab. 2015;16(9):753-64 [26630906.001]
  • [Cites] Toxicol In Vitro. 2010 Sep;24(6):1775-81 [20619336.001]
  • [Cites] Eur J Pharm Sci. 2006 May;28(1-2):109-17 [16488578.001]
  • [Cites] AAPS J. 2013 Jul;15(3):629-45 [23543602.001]
  • [Cites] Toxicology. 2001 Oct 5;167(1):37-46 [11557128.001]
  • [Cites] Curr Drug Metab. 2005 Aug;6(4):309-28 [16101571.001]
  • [Cites] Pharmacol Rep. 2012;64(4):927-39 [23087145.001]
  • [Cites] PLoS One. 2015 Mar 24;10 (3):e0121232 [25803276.001]
  • [Cites] Drug Metab Dispos. 2005 Oct;33(10):1418-22 [16014767.001]
  • [Cites] J Hazard Mater. 2007 Jul 19;146(1-2):356-61 [17234337.001]
  • [Cites] Compr Physiol. 2013 Oct;3(4):1721-40 [24265243.001]
  • [Cites] Free Radic Biol Med. 2014 Jun;71:133-45 [24632381.001]
  • [Cites] Mol Pharmacol. 2010 Dec;78(6):1079-87 [20829431.001]
  • [Cites] Methods Mol Biol. 2015;1250:287-302 [26272151.001]
  • [Cites] J Pharm Sci. 2016 Feb;105(2):443-59 [26869411.001]
  • [Cites] Methods Mol Biol. 2010;640:1-40 [20645044.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2016 Apr 15;310(8):G618-28 [26867564.001]
  • [Cites] Toxicol Sci. 2015 Oct;147(2):412-24 [26160117.001]
  • [Cites] Methods Mol Biol. 2010;640:115-38 [20645049.001]
  • [Cites] Int J Cancer. 1995 Dec 11;63(6):855-62 [8847145.001]
  • [Cites] Free Radic Biol Med. 2001 Dec 15;31(12):1539-43 [11744327.001]
  • [Cites] Eur J Pharm Sci. 2013 Apr 11;49(1):39-50 [23396053.001]
  • [Cites] Drug Metab Dispos. 2009 Mar;37(3):685-93 [19074973.001]
  • [Cites] Arch Toxicol. 2013 Aug;87(8):1315-530 [23974980.001]
  • [Cites] J Biol Chem. 2002 Jan 25;277(4):2908-15 [11706036.001]
  • [Cites] J Exp Ther Oncol. 2007;6(4):335-48 [18038766.001]
  • [Cites] Drug Metab Dispos. 2016 Apr;44(4):527-33 [26851239.001]
  • [Cites] Cancer Res. 2000 Jan 1;60(1):47-50 [10646850.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2013 May;9(5):589-616 [23452081.001]
  • [Cites] Cancer Res. 1982 Sep;42(9):3858-63 [6286115.001]
  • [Cites] Nat Biotechnol. 2015 Dec;33(12):1264-1271 [26501953.001]
  • [Cites] Eur J Pharm Sci. 2006 Apr;27(5):524-32 [16337112.001]
  • [Cites] Int J Oncol. 1999 Sep;15(3):571-6 [10427142.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2014;54:509-35 [24160696.001]
  • [Cites] Pharmacol Rev. 2013 May 17;65(3):944-66 [23686349.001]
  • [Cites] Biochem Pharmacol. 2000 Dec 15;60(12):1967-75 [11108814.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2008 Apr;4(4):363-79 [18433342.001]
  • [Cites] Toxicol In Vitro. 2015 Aug;29(5):938-46 [25862123.001]
  • [Cites] Drug Metab Rev. 2010 Aug;42(3):482-538 [20233023.001]
  • [Cites] Toxicol Lett. 2015 Feb 3;232(3):580-9 [25542144.001]
  • [Cites] Toxicol In Vitro. 2012 Dec;26(8):1278-85 [22643240.001]
  • [Cites] Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15655-60 [12432097.001]
  • [Cites] Int J Neuropsychopharmacol. 2010 Aug;13(7):905-15 [19887017.001]
  • [Cites] Expert Opin Drug Metab Toxicol. 2009 Dec;5(12):1469-81 [19785515.001]
  • [Cites] Toxicology. 2000 Nov 16;153(1-3):203-19 [11090958.001]
  • [Cites] Eur J Pharmacol. 2015 Jan 5;746:167-73 [25449033.001]
  • [Cites] Toxicol Sci. 2015 May;145(1):157-68 [25690737.001]
  • [Cites] Curr Drug Targets. 2011 May;12(5):671-82 [21039331.001]
  • [Cites] Liver Int. 2016 Sep;36(9):1284-94 [26931636.001]
  • [Cites] Hepatology. 2014 Dec;60(6):1993-2007 [24729004.001]
  • [Cites] J Biol Chem. 2001 May 4;276(18):14581-7 [11297522.001]
  • [Cites] J Biol Chem. 1987 Feb 15;262(5):2166-70 [2434476.001]
  • [Cites] Nat Rev Drug Discov. 2010 Aug;9(8):597-614 [20671764.001]
  • [Cites] Toxicol In Vitro. 2014 Sep;28(6):1165-75 [24907646.001]
  • [Cites] Am J Physiol Gastrointest Liver Physiol. 2012 Sep 1;303(5):G657-65 [22744337.001]
  • [Cites] Annu Rev Pharmacol Toxicol. 2005;45:689-723 [15822193.001]
  • [Cites] Drug Metab Rev. 2013 May;45(2):196-217 [23368091.001]
  • [Cites] Hepatology. 2002 Mar;35(3):589-96 [11870371.001]
  • [Cites] J Clin Pharmacol. 2007 May;47(5):566-78 [17442683.001]
  • [Cites] Pharmaceutics. 2016 Apr 12;8(2):null [27077878.001]
  • (PMID = 28036031.001).
  • [Journal-full-title] Pharmaceutics
  • [ISO-abbreviation] Pharmaceutics
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Switzerland
  • [Keywords] NOTNLM ; HuH-7 / MRP2 / drug transporters / hepatocytes / hepatoma
  •  go-up   go-down


73. Elmeligie S, Ahmed EM, Abuel-Maaty SM, Zaitone SA, Mikhail DS: Design and Synthesis of Pyridazine Containing Compounds with Promising Anticancer Activity. Chem Pharm Bull (Tokyo); 2017;65(3):236-247

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • All the synthesized compounds were screened for their cytotoxic activity in vitro on colon cancer cell line (HCT-116) and breast cancer cell line (MCF-7).
  • The in vitro vascular endothelial growth factor receptor (VEGFR) enzyme inhibition assay was carried out for the most active compounds at a single dose of 10 µM.
  • [MeSH-minor] Animals. Cell Proliferation / drug effects. Dose-Response Relationship, Drug. Drug Screening Assays, Antitumor. Female. HCT116 Cells. Humans. MCF-7 Cells. Mice. Models, Molecular. Molecular Structure. Neoplasms, Experimental / drug therapy. Neoplasms, Experimental / pathology. Receptors, Vascular Endothelial Growth Factor / antagonists & inhibitors. Receptors, Vascular Endothelial Growth Factor / metabolism. Structure-Activity Relationship

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28250345.001).
  • [ISSN] 1347-5223
  • [Journal-full-title] Chemical & pharmaceutical bulletin
  • [ISO-abbreviation] Chem. Pharm. Bull.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Japan
  • [Chemical-registry-number] 0 / Antineoplastic Agents; 0 / Protein Kinase Inhibitors; 0 / Pyridazines; 449GLA0653 / pyridazine; EC 2.7.10.1 / Receptors, Vascular Endothelial Growth Factor
  •  go-up   go-down


74. Alvarado A, Gil da Costa RM, Faustino-Rocha AI, Ferreira R, Lopes C, Oliveira PA, Colaço B: Effects of exercise training on breast cancer metastasis in a rat model. Int J Exp Pathol; 2017 Feb;98(1):40-46

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Effects of exercise training on breast cancer metastasis in a rat model.
  • Exercise training is thought to play a protective role against cancer development and metastasis, either by reducing hormonal stimulation of hormone-dependent cancers or by reducing the permeability of vascular walls towards invading metastatic cells.
  • The purpose of this work was to evaluate the role of long-term exercise training in the development and metastasis of breast cancer, in an immune-competent 1-methyl-1-nitrosourea (MNU) induced rat model.
  • A single MNU dose was administered to Sprague-Dawley rats at 50 days of age and the rats were subjected to exercise training on a treadmill at 20 m/min, 60 min/day, 5 days/week for 35 weeks.
  • Exercised animals developed slightly less (2.30 ± 1.42) tumours per animal than sedentary animals (2.55 ± 1.44) and did not develop any metastasis, while two pulmonary metastases were observed in the sedentary group.
  • All primary neoplasms and their metastases were positive for oestrogen (ER) α and progesterone (PR) receptors, indicating high hormonal sensitivity.
  • Interestingly, exercise training increased circulating oestrogen levels, thus suggesting that the mechanism might involve either or both of a protective hormone-independent effect and modulation of tumoural vascularization.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.
  • [Cites] J Surg Oncol. 1998 Nov;69(3):137-46 [9846499.001]
  • [Cites] Pathol Res Pract. 2012 Jul 15;208(7):377-81 [22683274.001]
  • [Cites] Oncotarget. 2016 Jul 26;7(30):47975-47984 [27322074.001]
  • [Cites] Nature. 2015 Jul 16;523(7560):313-7 [26153859.001]
  • [Cites] Cancer Res. 1981 May;41(5):1690-4 [7214338.001]
  • [Cites] In Vivo. 2016 Jul-Aug;30(4):465-72 [27381610.001]
  • [Cites] Cell. 2011 Oct 14;147(2):275-92 [22000009.001]
  • [Cites] Tumour Biol. 2015 Dec;36(12):9095-117 [26386719.001]
  • [Cites] Endocr Relat Cancer. 2009 Jun;16(2):333-50 [19190078.001]
  • [Cites] CA Cancer J Clin. 1986 Sep-Oct;36(5):302-9 [3093016.001]
  • [Cites] BMC Cancer. 2016 Mar 21;16:242 [26996776.001]
  • [Cites] Biomed Pharmacother. 2013 Oct;67(8):771-6 [23906759.001]
  • [Cites] J Environ Pathol Toxicol Oncol. 2013;32(2):157-63 [24099429.001]
  • [Cites] BMC Cancer. 2015 Mar 18;15:138 [25880075.001]
  • [Cites] Cancer Res. 2004 Apr 15;64(8):2923-8 [15087413.001]
  • [Cites] Arch Biochem Biophys. 2015 Feb 1;567:13-21 [25575785.001]
  • [Cites] Biochem Biophys Res Commun. 2010 Aug 13;399(1):14-9 [20633535.001]
  • [Cites] Pathol Oncol Res. 2009 Mar;15(1):115-21 [18985443.001]
  • [Cites] Med Sci Sports Exerc. 2003 Nov;35(11):1834-40 [14600547.001]
  • [Cites] Horm Cancer. 2013 Dec;4(6):381-90 [23996077.001]
  • [Cites] J Clin Oncol. 2010 May 1;28(13):e200-2 [20124173.001]
  • [Cites] IUBMB Life. 2013 Jul;65(7):565-71 [23757193.001]
  • [Cites] Cancer Res. 1994 Apr 1;54(7 Suppl):1960s-1963s [8137320.001]
  • [Cites] Lab Anim (NY). 2013 Jun;42(6):217-24 [23689461.001]
  • [Cites] Anticancer Res. 2016 May;36(5):2181-8 [27127121.001]
  • [Cites] J Natl Cancer Inst. 2014 Apr;106(4):dju036 [24627275.001]
  • [Cites] J Pathol. 2014 Jan;232(1):23-31 [24122263.001]
  • [Cites] Clin Exp Med. 2017 May;17 (2):151-160 [27094311.001]
  • [Cites] Biochem Biophys Res Commun. 2015 Aug 7;463(4):811-7 [26056010.001]
  • [Cites] PLoS One. 2014 May 07;9(5):e97033 [24804765.001]
  • [Cites] Cancer Prev Res (Phila). 2010 Nov;3(11):1484-92 [20876731.001]
  • [Cites] Cancer Treat Rev. 2015 Feb;41(2):69-76 [25554445.001]
  • [Cites] Med Hypotheses. 2007;68(5):1138-43 [17113718.001]
  • [Cites] J Mammary Gland Biol Neoplasia. 2000 Apr;5(2):187-200 [11149572.001]
  • [Cites] Exp Biol Med (Maywood). 2015 Nov;240(11):1408-15 [25990440.001]
  • [Cites] Biomed Pharmacother. 2016 Jul;81:273-80 [27261604.001]
  • [Cites] Breast Cancer Res Treat. 1998 Jan;47(1):1-8 [9493970.001]
  • (PMID = 28556395.001).
  • [ISSN] 1365-2613
  • [Journal-full-title] International journal of experimental pathology
  • [ISO-abbreviation] Int J Exp Pathol
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; chemical carcinogenesis / mammary tumours / oestrogen receptor α / progesterone receptor / treadmill / vascularization
  •  go-up   go-down


75. Ryzhov S, Matafonov A, Galindo CL, Zhang Q, Tran TL, Lenihan DJ, Lenneman CG, Feoktistov I, Sawyer DB: ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am J Physiol Heart Circ Physiol; 2017 May 01;312(5):H907-H918
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] ERBB signaling attenuates proinflammatory activation of nonclassical monocytes.
  • Immune activation in chronic systolic heart failure (HF) correlates with disease severity and prognosis.
  • Recombinant neuregulin-1 (rNRG-1) is being developed as a possible therapy for HF, based on the activation of ERBB receptors in cardiac cells.
  • Work in animal models of HF led us to hypothesize that there may be direct effects of NRG-1 on immune system activation and inflammation.
  • We investigated the expression of ERBB receptors and the effect of rNRG-1 isoform glial growth factor 2 (GGF2) in subpopulations of peripheral blood mononuclear cells (PB MNCs) in subjects with HF.
  • We found that human monocytes express both ERBB2 and ERBB3 receptors, with high interindividual variability among subjects.
  • Monocyte surface ERBB3 and TNF-α mRNA expression were inversely correlated in subjects with HF but not in human subjects without HF.
  • GGF2 activation of ERBB signaling ex vivo inhibited LPS-induced TNF-α production, specifically in the CD14<sup>low</sup>CD16<sup>+</sup> population of monocytes in a phosphoinositide 3-kinase-dependent manner.
  • GGF2 suppression of TNF-α correlated directly with the expression of ERBB3.
  • In vivo, a single dose of intravenous GGF2 reduced TNF-α expression in PB MNCs of HF subjects participating in a phase I safety study of GGF2.
  • These results support a role for ERBB3 signaling in the regulation of TNF-α production from CD14<sup>low</sup>CD16<sup>+</sup> monocytes and a need for further investigation into the clinical significance of NRG-1/ERBB signaling as a modulator of immune system function.
  • <b>NEW & NOTEWORTHY</b> This study identified a novel role of neuregulin-1 (NRG-1)/ERBB signaling in the control of proinflammatory activation of monocytes.
  • These results further improve our fundamental understanding of cardioprotective effects of NRG-1 in patients with heart failure.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 the American Physiological Society.
  • [Cites] Circulation. 2001 Apr 24;103(16):2055-9 [11319194.001]
  • [Cites] Arthritis Res Ther. 2010;12(1):R14 [20102624.001]
  • [Cites] Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1311-9 [21239627.001]
  • [Cites] Mediators Inflamm. 2012;2012:616384 [23226928.001]
  • [Cites] J Intern Med. 1998 Feb;243(2):87-92 [9566635.001]
  • [Cites] J Immunol. 2002 Apr 1;168(7):3536-42 [11907116.001]
  • [Cites] N Engl J Med. 1990 Jul 26;323(4):236-41 [2195340.001]
  • [Cites] Infect Immun. 1999 Aug;67(8):3824-9 [10417144.001]
  • [Cites] Mol Pharmacol. 2014 Jan;85(1):62-73 [24136993.001]
  • [Cites] Cancer Cell. 2015 Jan 12;27(1):97-108 [25544637.001]
  • [Cites] Dis Markers. 2010;28(2):115-24 [20364047.001]
  • [Cites] Cardiovasc Res. 2010 Mar 1;85(4):649-60 [19805399.001]
  • [Cites] Clin Rev Allergy Immunol. 2002 Dec;23(3):325-40 [12402415.001]
  • [Cites] Biomark Res. 2014 Jan 07;2(1):1 [24398220.001]
  • [Cites] Eur J Immunol. 2009 Feb;39(2):561-70 [19180470.001]
  • [Cites] Biochem J. 1998 Aug 1;333 ( Pt 3):757-63 [9677338.001]
  • [Cites] Biochem J. 1993 Dec 1;296 ( Pt 2):297-301 [8257416.001]
  • [Cites] PLoS Pathog. 2014 Sep 18;10(9):e1004393 [25233271.001]
  • [Cites] Biom J. 2006 Feb;48(1):144-8 [16544819.001]
  • [Cites] Circ Res. 2012 Jan 6;110(1):145-58 [22223211.001]
  • [Cites] Circulation. 2000 Dec 19;102(25):3060-7 [11120695.001]
  • [Cites] Sci Rep. 2016 Jul 22;6:30162 [27444882.001]
  • [Cites] J Biol Chem. 2004 Dec 3;279(49):51141-7 [15385548.001]
  • [Cites] Am J Physiol Cell Physiol. 2000 Sep;279(3):C578-86 [10942707.001]
  • [Cites] Int J Cardiol. 1998 Feb 28;63(3):237-44 [9578350.001]
  • [Cites] Biochim Biophys Acta. 2014 Sep;1842(9):1539-48 [24915517.001]
  • [Cites] J Am Coll Cardiol. 2010 May 4;55(18):1907-14 [20430261.001]
  • [Cites] Cardiovasc Res. 2006 Jun 1;70(3):434-45 [16480965.001]
  • [Cites] Circulation. 2011 May 24;123(20):2254-62 [21555713.001]
  • [Cites] J Immunol. 2015 Apr 15;194(8):3917-23 [25786686.001]
  • [Cites] Eur J Heart Fail. 2014 Jan;16(1):68-75 [23918775.001]
  • [Cites] Nat Rev Cancer. 2005 May;5(5):341-54 [15864276.001]
  • [Cites] J Mol Med (Berl). 2010 Nov;88(11):1133-41 [20625696.001]
  • [Cites] J Immunol. 2013 Oct 15;191(8):4308-16 [24043889.001]
  • [Cites] Cardiovasc Res. 2012 Mar 1;93(3):516-24 [22200588.001]
  • [Cites] J Biol Chem. 2002 Aug 30;277(35):32124-32 [12052830.001]
  • [Cites] Cell. 2013 Apr 11;153(2):362-75 [23582326.001]
  • [Cites] Circ Res. 2012 Jan 6;110(1):126-44 [22223210.001]
  • [Cites] N Engl J Med. 1998 Dec 17;339(25):1810-6 [9854116.001]
  • [Cites] Atherosclerosis. 2002 Apr;161(2):381-6 [11888521.001]
  • [Cites] Biochem Biophys Res Commun. 1997 Nov 26;240(3):692-6 [9398628.001]
  • [Cites] Eur J Clin Invest. 2013 Feb;43(2):121-30 [23240665.001]
  • [Cites] J Am Coll Cardiol. 2009 Mar 24;53(12):1013-20 [19298913.001]
  • [Cites] Circ Res. 2012 Jan 6;110(1):159-73 [22223212.001]
  • [Cites] Herz. 2011 Jun;36(4):306-10 [21633805.001]
  • [Cites] Eur J Heart Fail. 2011 Nov;13(11):1161-71 [21952932.001]
  • [Cites] Shock. 2007 Jul;28(1):15-23 [17510602.001]
  • [Cites] Int J Cardiol. 2007 Feb 7;115(2):159-63 [16766065.001]
  • [Cites] Am J Physiol Cell Physiol. 2003 May;284(5):C1149-55 [12519750.001]
  • [Cites] Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H931-42 [21186272.001]
  • [Cites] J Immunol. 2003 Jul 15;171(2):717-25 [12847238.001]
  • [Cites] J Biol Chem. 1995 Mar 31;270(13):7111-6 [7535767.001]
  • [Cites] Eur J Heart Fail. 2005 Jun;7(4):479-84 [15921783.001]
  • [Cites] Mol Biol Rep. 2012 Jun;39(6):6745-52 [22311021.001]
  • [Cites] Immunity. 2010 Sep 24;33(3):375-86 [20832340.001]
  • [Cites] Circ Heart Fail. 2010 Mar;3(2):314-25 [20233993.001]
  • [Cites] Cardiovasc Drugs Ther. 2011 Apr;25(2):149 [21573764.001]
  • (PMID = 28235789.001).
  • [ISSN] 1522-1539
  • [Journal-full-title] American journal of physiology. Heart and circulatory physiology
  • [ISO-abbreviation] Am. J. Physiol. Heart Circ. Physiol.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; ERBB receptor tyrosine kinase / heart failure / inflammation / inflammatory cytokine / neuregulin
  •  go-up   go-down


76. Korsak B, Almeida GM, Rocha S, Pereira C, Mendes N, Osório H, Pereira PMR, Rodrigues JMM, Schneider RJ, Sarmento B, Tomé JPC, Oliveira C: Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. Int J Cancer; 2017 Jun 22;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Human epidermal growth factor receptor-2 (HER2) is overexpressed in ∼20% of GC cases and anti-HER2 antibody trastuzumab in combination with conventional chemotherapy, is recognized as standard therapy for HER2-positive metastatic GC.
  • The in vitro data demonstrates that Trast:Porph specifically binds to HER2-positive cells, accumulates intracellularly, co-localizes with lysosomal marker LAMP1, and induces massive HER2-positive cell death upon cellular irradiation.
  • The high selectivity and cytotoxicity of Trast:Porph based photoimmunotherapy is confirmed in vivo in comparison with trastuzumab alone, using nude mice xenografted with a HER2-positive GC cell line.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 UICC.
  • (PMID = 28639285.001).
  • [ISSN] 1097-0215
  • [Journal-full-title] International journal of cancer
  • [ISO-abbreviation] Int. J. Cancer
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; HER2 / gastric cancer / photoimmunoconjugate / photoimmunotherapy / trastuzumab
  •  go-up   go-down


77. Singh G, Singh G, Bhatti R, Gupta V, Mahajan A, Singh P, Singh Ishar MP: Rationally designed benzopyran fused isoxazolidines and derived β&lt;sup&gt;2,3,3&lt;/sup&gt;-amino alcohols as potent analgesics: Synthesis, biological evaluation and molecular docking analysis. Eur J Med Chem; 2017 Feb 15;127:210-222
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • Further, molecular docking analysis reveals that compound 2a binds to δ-opioid receptor (DOR) with comparatively better D-score than to μ (MOR) and κ (KOR) receptors.
  • [MeSH-minor] Animals. Cell Line. Chemistry Techniques, Synthetic. Drug Design. Female. Humans. Male. Mice. Pain / drug therapy. Prostaglandin-Endoperoxide Synthases / metabolism. Protein Conformation. Receptors, Opioid / chemistry. Receptors, Opioid / metabolism

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2016 Elsevier Masson SAS. All rights reserved.
  • (PMID = 28063353.001).
  • [ISSN] 1768-3254
  • [Journal-full-title] European journal of medicinal chemistry
  • [ISO-abbreviation] Eur J Med Chem
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] France
  • [Chemical-registry-number] 0 / Amino Alcohols; 0 / Analgesics; 0 / Benzopyrans; 0 / Isoxazoles; 0 / Receptors, Opioid; EC 1.14.99.1 / Prostaglandin-Endoperoxide Synthases
  • [Keywords] NOTNLM ; Antinociceptive activity / Benzopyran fused isoxazolidines / Intramolecular 1,3-dipolar cycloaddition / Opioid receptor / Reductive cleavage
  •  go-up   go-down


78. Wang T, Tang H: The physical characteristics of human proteins in different biological functions. PLoS One; 2017;12(5):e0176234

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression.
  • Immune and peripheral cell proteins tend to be mRNA stable/protein unstable.
  • The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids.
  • The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity.
  • Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Cites] Nat Rev Genet. 2002 Nov;3(11):838-49 [12415314.001]
  • [Cites] Clin Genet. 2000 Apr;57(4):253-66 [10845565.001]
  • [Cites] Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6 [21045057.001]
  • [Cites] Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [10592173.001]
  • [Cites] Mol Biosyst. 2009 Dec;5(12):1512-26 [20023718.001]
  • [Cites] Mol Syst Biol. 2011 May 24;7:498 [21613985.001]
  • [Cites] Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80 [19351897.001]
  • [Cites] J Mol Biol. 1982 May 5;157(1):105-32 [7108955.001]
  • [Cites] Genome Res. 2003 Sep;13(9):2178-89 [12952885.001]
  • [Cites] Nucleic Acids Res. 2007 Jan;35(Database issue):D561-5 [17145710.001]
  • [Cites] Am J Hum Genet. 2008 Nov;83(5):610-5 [18950739.001]
  • [Cites] Proteomics. 2006 Jan;6(2):449-55 [16317776.001]
  • [Cites] J Proteome Res. 2009 Jan;8(1):104-12 [18954100.001]
  • [Cites] Mol Syst Biol. 2010 Aug 24;6:406 [20739928.001]
  • [Cites] Nature. 2011 May 19;473(7347):337-42 [21593866.001]
  • [Cites] Science. 2008 Nov 7;322(5903):918-23 [18988847.001]
  • [Cites] BMC Syst Biol. 2009 Feb 18;3:21 [19226461.001]
  • [Cites] Genome Res. 2003 Aug;13(8):1863-72 [12902380.001]
  • [Cites] Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8390-5 [15150418.001]
  • [Cites] Nucleic Acids Res. 2011 Jan;39(Database issue):D253-60 [21081558.001]
  • [Cites] Nat Biotechnol. 2010 Apr;28(4):322-4 [20379172.001]
  • [Cites] Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14508-13 [20699386.001]
  • [Cites] Genome Res. 2001 May;11(5):703-9 [11337469.001]
  • [Cites] Nat Biotechnol. 2008 Feb;26(2):164-7 [18259167.001]
  • [Cites] Nat Protoc. 2009;4(1):44-57 [19131956.001]
  • [Cites] Mol Biol Evol. 2005 Mar;22(3):598-606 [15537804.001]
  • [Cites] Mol Biol Evol. 1986 Sep;3(5):418-26 [3444411.001]
  • [Cites] Trends Cell Biol. 2011 May;21(5):293-303 [21474317.001]
  • [Cites] Nucleic Acids Res. 2005 Jan 1;33(Database issue):D562-6 [15608262.001]
  • [Cites] Nucleic Acids Res. 2010 Jan;38(Database issue):D331-5 [19920128.001]
  • (PMID = 28459865.001).
  • [ISSN] 1932-6203
  • [Journal-full-title] PloS one
  • [ISO-abbreviation] PLoS ONE
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  •  go-up   go-down


79. Denisov EV, Skryabin NA, Gerashchenko TS, Tashireva LA, Wilhelm J, Buldakov MA, Sleptcov AA, Lebedev IN, Vtorushin SV, Zavyalova MV, Cherdyntseva NV, Perelmuter VM: Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness. Oncotarget; 2017 May 19;
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness.
  • By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression.
  • Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • (PMID = 28591736.001).
  • [ISSN] 1949-2553
  • [Journal-full-title] Oncotarget
  • [ISO-abbreviation] Oncotarget
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] United States
  • [Keywords] NOTNLM ; breast cancer / cancer invasion / cancer stem cell / epithelial-mesenchymal transition / tumor heterogeneity
  •  go-up   go-down


80. He L, Brasino M, Mao C, Cho S, Park W, Goodwin AP, Cha JN: DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small; 2017 Jun;13(24)
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy.
  • DNA-mediated assembly of core-satellite structures composed of Zr(IV)-based porphyrinic metal-organic framework (MOF) and NaYF<sub>4</sub> ,Yb,Er upconverting nanoparticles (UCNPs) for photodynamic therapy (PDT) is reported.
  • The MOF-UCNP core-satellite superstructures also induce strong cell cytotoxicity against cancer cells, which are further enhanced by attaching epidermal growth factor receptor targeting affibodies to the PDT clusters, highlighting their promise as theranostic photodynamic agents.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • (PMID = 28481463.001).
  • [ISSN] 1613-6829
  • [Journal-full-title] Small (Weinheim an der Bergstrasse, Germany)
  • [ISO-abbreviation] Small
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] Germany
  • [Keywords] NOTNLM ; DNA self-assembly / core-satellite / metal-organic frameworks / photodynamic therapy / upconverting nanoparticles
  •  go-up   go-down


81. Koprivanacz K, Tőke O, Besztercei B, Juhász T, Radnai L, Merő B, Mihály J, Péter M, Balogh G, Vígh L, Buday L, Liliom K: The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Cell Signal; 2017 Apr;32:66-75
NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • They also exert several G protein-coupled receptor-independent functions but their intracellular target proteins are mostly unknown.

  • NCI CPTAC Assay Portal. NCI CPTAC Assay Portal .
  • [Email] Email this result item
    Email the results to the following email address:   [X] Close
  • [Copyright] Copyright © 2017 Elsevier Inc. All rights reserved.
  • (PMID = 28104445.001).
  • [ISSN] 1873-3913
  • [Journal-full-title] Cellular signalling
  • [ISO-abbreviation] Cell. Signal.
  • [Language] eng
  • [Publication-type] Journal Article
  • [Publication-country] England
  • [Keywords] NOTNLM ; Caskin1 / SH3 domain / lipid signaling / lysophosphatidic acid / proline-rich motif / protein-lipid interaction
  •  go-up   go-down


82. Thompson CA, Wojta K, Pulakanti K, Rao S, Dawson P, Battle MA: GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine. Cell Mol Gastroenterol Hepatol; 2017 May;3(3):422-446
NCI CPTC Antibody Characterization Program. NCI CPTC Antibody Characterization Program .

  • [Source] The source of this record is MEDLINE®, a database of the U.S. National Library of Medicine.
  • [Title] GAT